Journal article icon

Journal article

Identification of undiagnosed atrial fibrillation patients using a machine learning risk prediction algorithm and diagnostic testing (PULsE-AI): Study protocol for a randomised controlled trial

Abstract:
Atrial fibrillation (AF) is associated with an increased risk of stroke, enhanced stroke severity, and other comorbidities. However, AF is often asymptomatic, and frequently remains undiagnosed until complications occur. Current screening approaches for AF lack either cost-effectiveness or diagnostic sensitivity; thus, there is interest in tools that could be used for population screening. An AF risk prediction algorithm, developed using machine learning from a UK dataset of 2,994,837 patients, was found to be more effective than existing models at identifying patients at risk of AF. Therefore, the aim of the trial is to assess the effectiveness of this risk prediction algorithm combined with diagnostic testing for the identification of AF in a real-world primary care setting. Eligible participants (aged ≥30 years and without an existing AF diagnosis) registered at participating UK general practices will be randomised into intervention and control arms. Intervention arm participants identified at highest risk of developing AF (algorithm risk score ≥ 7.4%) will be invited for a 12‑lead electrocardiogram (ECG) followed by two-weeks of home-based ECG monitoring with a KardiaMobile device. Control arm participants will be used for comparison and will be managed routinely. The primary outcome is the number of AF diagnoses in the intervention arm compared with the control arm during the research window. If the trial is successful, there is potential for the risk prediction algorithm to be implemented throughout primary care for narrowing the population considered at highest risk for AF who could benefit from more intensive screening for AF. Trial Registration: NCT04045639.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Publisher copy:
10.1016/j.cct.2020.106191

Authors


More by this author
Institution:
University of Oxford
Department:
ENGINEERING SCIENCE
Sub department:
Engineering Science
Oxford college:
Balliol College
Role:
Author


Publisher:
Elsevier
Journal:
Contemporary Clinical Trials More from this journal
Volume:
99
Article number:
106191
Publication date:
2020-10-19
Acceptance date:
2020-10-16
DOI:
EISSN:
1559-2030
ISSN:
1551-7144
Pmid:
33091585


Language:
English
Keywords:
Pubs id:
1139527
Local pid:
pubs:1139527
Deposit date:
2021-07-23

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP