Journal article icon

Journal article

Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff

Abstract:
Giles (Oper. Res. 56:607-617, 2008) introduced a multi-level Monte Carlo method for approximating the expected value of a function of a stochastic differential equation solution. A key application is to compute the expected payoff of a financial option. This new method improves on the computational complexity of standard Monte Carlo. Giles analysed globally Lipschitz payoffs, but also found good performance in practice for non-globally Lipschitz cases. In this work, we show that the multi-level Monte Carlo method can be rigorously justified for non-globally Lipschitz payoffs. In particular, we consider digital, lookback and barrier options. This requires non-standard strong convergence analysis of the Euler-Maruyama method. © Springer-Verlag 2009.
Publication status:
Published

Actions


Access Document


Publisher copy:
10.1007/s00780-009-0092-1

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Mathematical Institute
Role:
Author


Journal:
FINANCE AND STOCHASTICS More from this journal
Volume:
13
Issue:
3
Pages:
403-413
Publication date:
2009-09-01
DOI:
EISSN:
1432-1122
ISSN:
0949-2984


Language:
English
Keywords:
Pubs id:
pubs:191342
UUID:
uuid:abe8ac05-4687-4a02-9845-703e3b51eebe
Local pid:
pubs:191342
Source identifiers:
191342
Deposit date:
2012-12-19

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP