Journal article
An algebraic characterisation of complexity for valued constraints
- Abstract:
- Classical constraint satisfaction is concerned with the feasibility of satisfying a collection of constraints. The extension of this framework to include optimisation is now also being investigated and a theory of so-called soft constraints is being developed. In this extended framework, tuples of values allowed by constraints are given desirability weightings, or costs, and the goal is to find the most desirable (or least cost) assignment. The complexity of any optimisation problem depends critically on the type of function which has to be minimized. For soft constraint problems this function is a sum of cost functions chosen from some fixed set of available cost functions, known as a valued constraint language. We show in this paper that when the costs are rational numbers or infinite the complexity of a soft constraint problem is determined by certain algebraic properties of the valued constraint language, which we call feasibility polymorphisms and fractional polymorphisms. As an immediate application of these results, we show that the existence of a non-trivial fractional polymorphism is a necessary condition for the tractability of a valued constraint language with rational or infinite costs over any finite domain (assuming P ≠ NP). © Springer-Verlag Berlin Heidelberg 2006.
- Publication status:
- Published
Actions
Authors
- Journal:
- PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING - CP 2006 More from this journal
- Volume:
- 4204
- Pages:
- 107-121
- Publication date:
- 2006-01-01
- EISSN:
-
1611-3349
- ISSN:
-
0302-9743
- Language:
-
English
- Pubs id:
-
pubs:285729
- UUID:
-
uuid:aa06b648-bdee-4764-964e-0a5d23fae270
- Local pid:
-
pubs:285729
- Source identifiers:
-
285729
- Deposit date:
-
2012-12-19
Terms of use
- Copyright date:
- 2006
If you are the owner of this record, you can report an update to it here: Report update to this record