Journal article
Energy transport between two integrable spin chains
- Abstract:
- We study the energy transport in a system of two half-infinite XXZ chains initially kept separated at different temperatures, and later connected and let free to evolve unitarily. By changing independently the parameters of the two halves, we highlight, through bosonisation and time-dependent matrix-product-state simulations, the different contributions of low-lying bosonic modes and of fermionic quasi-particles to the energy transport. In the simulations we also observe that the energy current reaches a finite value which only slowly decays to zero. The general pictures that emerges is the following. Since integrability is only locally broken in this model, a pre-equilibration behaviour may appear. In particular, when the sound velocities of the bosonic modes of the two halves match, the low-temperature energy current is almost stationary and described by a formula with a non-universal prefactor interpreted as a transmission coefficient. Thermalisation, characterized by the absence of any energy flow, occurs only on longer time-scales which are not accessible with our numerics.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 1.1MB, Terms of use)
-
- Publisher copy:
- 10.1103/PhysRevB.93.205121
Authors
- Publisher:
- American Physical Society
- Journal:
- Physical Review B More from this journal
- Volume:
- 93
- Issue:
- 20
- Article number:
- 205121
- Publication date:
- 2016-05-13
- DOI:
- EISSN:
-
2469-9969
- ISSN:
-
2469-9950
- Language:
-
English
- Keywords:
- Pubs id:
-
pubs:673318
- UUID:
-
uuid:a3890175-018f-46a9-9fea-65a2aa19991f
- Local pid:
-
pubs:673318
- Source identifiers:
-
673318
- Deposit date:
-
2019-04-10
Terms of use
- Copyright holder:
- American Physical Society
- Copyright date:
- 2016
- Notes:
- © 2016 American Physical Society. This is the publisher's version of the article. The final version is available online from American Physical Society at: https://doi.org/10.1103/PhysRevB.93.205121
If you are the owner of this record, you can report an update to it here: Report update to this record