Journal article
Atomistic deformation mechanism of silicon under laser-driven shock compression
- Abstract:
- Silicon (Si) is one of the most abundant elements on Earth, and it is the most widely used semiconductor. Despite extensive study, some properties of Si, such as its behaviour under dynamic compression, remain elusive. A detailed understanding of Si deformation is crucial for various fields, ranging from planetary science to materials design. Simulations suggest that in Si the shear stress generated during shock compression is released via a high-pressure phase transition, challenging the classical picture of relaxation via defect-mediated plasticity. However, direct evidence supporting either deformation mechanism remains elusive. Here, we use sub-picosecond, highly-monochromatic x-ray diffraction to study (100)-oriented single-crystal Si under laser-driven shock compression. We provide the first unambiguous, time-resolved picture of Si deformation at ultra-high strain rates, demonstrating the predicted shear release via phase transition. Our results resolve the longstanding controversy on silicon deformation and provide direct proof of strain rate-dependent deformation mechanisms in a non-metallic system.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 2.6MB, Terms of use)
-
- Publisher copy:
- 10.1038/s41467-022-33220-0
Authors
- Publisher:
- Springer Nature
- Journal:
- Nature Communications More from this journal
- Volume:
- 13
- Article number:
- 5535
- Publication date:
- 2022-09-21
- Acceptance date:
- 2022-09-02
- DOI:
- EISSN:
-
2041-1723
- Language:
-
English
- Keywords:
- Pubs id:
-
1274216
- Local pid:
-
pubs:1274216
- Deposit date:
-
2022-08-15
Terms of use
- Copyright holder:
- Pandolfi et al.
- Copyright date:
- 2022
- Rights statement:
- ©2022 The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record