Journal article
How to minimize dye-induced perturbations while studying biomembrane structure and dynamics: PEG linkers as a rational alternative
- Abstract:
- Organic dye-tagged lipid analogs are essential for many fluorescence-based investigations of complex membrane structures, especially when using advanced microscopy approaches. However, lipid analogs may interfere with membrane structure and dynamics, and it is not obvious that the properties of lipid analogs would match those of non-labeled host lipids. In this work, we bridged atomistic simulations with super-resolution imaging experiments and biomimetic membranes to assess the performance of commonly used sphingomyelin-based lipid analogs. The objective was to compare, on equal footing, the relative strengths and weaknesses of acyl chain labeling, headgroup labeling, and labeling based on poly-ethyl-glycol (PEG) linkers in determining biomembrane properties. We observed that the most appropriate strategy to minimize dye-induced membrane perturbations and to allow consideration of Brownian-like diffusion in liquid-ordered membrane environments is to decouple the dye from a membrane by a PEG linker attached to a lipid headgroup. Yet, while the use of PEG linkers may sound a rational and even an obvious approach to explore membrane dynamics, the results also suggest that the dyes exploiting PEG linkers interfere with molecular interactions and their dynamics. Overall, the results highlight the great care needed when using fluorescent lipid analogs, in particular accurate controls.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 1.2MB, Terms of use)
-
- Publisher copy:
- 10.1016/j.bbamem.2018.07.003
Authors
+ Wellcome Trust
More from this funder
- Funding agency for:
- Sezgin, E
- Eggeling, C
- Grant:
- Strategic Award 091911
- Strategic Award 091911
+ MRC/BBSRC/EPSRC
More from this funder
- Funding agency for:
- Sezgin, E
- Eggeling, C
- Grant:
- Strategic Award 091911
- Strategic Award 091911
+ Medical Research Council
More from this funder
- Funding agency for:
- Sezgin, E
- Eggeling, C
- Grant:
- Strategic Award 091911
- Strategic Award 091911
+ Wolfson Foundation
More from this funder
- Funding agency for:
- Sezgin, E
- Eggeling, C
- Grant:
- Strategic Award 091911
- Strategic Award 091911
- Publisher:
- Elsevier
- Journal:
- Biochimica et Biophysica Acta (BBA) - Biomembranes More from this journal
- Volume:
- 1860
- Issue:
- 11
- Pages:
- 2436-2445
- Publication date:
- 2018-07-18
- Acceptance date:
- 2018-07-09
- DOI:
- EISSN:
-
1879-2642
- ISSN:
-
0005-2736
- Pmid:
-
30028957
- Language:
-
English
- Keywords:
- Pubs id:
-
pubs:891326
- UUID:
-
uuid:9e792c6a-920f-4bb8-804d-af1b936db222
- Local pid:
-
pubs:891326
- Source identifiers:
-
891326
- Deposit date:
-
2018-10-21
Terms of use
- Copyright holder:
- Mobarak et al
- Copyright date:
- 2018
- Notes:
-
Copyright © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/BY/4.0/).
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record