Journal article
High-field immiscibility of electrons belonging to adjacent twinned bismuth crystals
- Abstract:
- Bulk bismuth has a complex Landau spectrum. The small effective masses and the large g-factors are anisotropic. The chemical potential drifts at high magnetic fields. Moreover, twin boundaries further complexify the interpretation of the data by producing extra anomalies in the extreme quantum limit. Here, we present a study of angle dependence of magnetoresistance up to 65 T in bismuth complemented with Nernst, ultrasound, and magneto-optic data. All observed anomalies can be explained in a single-particle picture of a sample consisting of two twinned crystals tilted by 108° and with two adjacent crystals keeping their own chemical potentials despite a shift between chemical potentials as large as 68 meV at 65 T. This implies an energy barrier between adjacent twinned crystals reminiscent of a metal- semiconductor Schottky barrier or a p-n junction. We argue that this barrier is built by accumulating charge carriers of opposite signs across a twin boundary.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 5.4MB, Terms of use)
-
- Publisher copy:
- 10.1038/s41535-024-00625-7
Authors
- Publisher:
- Springer Nature
- Journal:
- npj Quantum Materials More from this journal
- Volume:
- 9
- Issue:
- 1
- Article number:
- 12
- Publication date:
- 2024-01-20
- Acceptance date:
- 2024-01-09
- DOI:
- EISSN:
-
2397-4648
- Language:
-
English
- Pubs id:
-
1598423
- Local pid:
-
pubs:1598423
- Deposit date:
-
2024-01-10
Terms of use
- Copyright holder:
- Ye et al.
- Copyright date:
- 2024
- Rights statement:
- © The Author(s) 2024. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record