Thesis icon

Thesis

Immune responses to vaccines against malaria

Abstract:

The development of a malaria vaccine is necessary for disease eradication. Successful vaccine candidates to date have targeted the asymptomatic, pre-erythrocytic stage of the disease, however even the most efficacious vaccines are only partially protective. Research undertaken in our laboratory has demonstrated that one such regimen, using an 8 week prime-boost viral vector approach of ChAd63 ME-TRAP and MVA ME-TRAP, induces sterile efficacy in 21% of vaccinees, with a key role identified for TRAP-specific CD8+ T cells. The work described in this thesis explores the most immunogenic regimen by which to administer these two pre-erythrocytic malaria vaccines. A shortening of the prime-boost interval from 8 to 4 weeks, and the addition of an extra ChAd63 ME-TRAP priming vaccination, both demonstrated improved T cell immunogenicity over the standard 8 week regimen. Further to this, novel assays were developed to aid the evaluation of vaccine-induced immune responses. Adaptations of the existing methodology for ELISpot analysis and to whole blood flow cytometry techniques, enabled more detailed analyses of paediatric vaccine-induced T cell responses in The Gambia. This work also permitted the comparison of vaccine immunogenicity in this paediatric population, with malaria-naïve and malaria-exposed adult vaccinees. The results suggest that vaccine-induced T cell responses in infants of 8 weeks and older are comparable to that of adults. A second approach involved the development of a novel functional assay. This assay quantitatively measured the in vitro inhibition of intrahepatic Plasmodium parasite development using T cells from ChAd63.MVA ME-TRAP vaccinated volunteers. The assay demonstrated the ability of CD8+ T cells to inhibit parasite development in a TRAP-specific manner, and provides a platform with which to further explore pre-erythrocytic immune responses.

Actions


Access Document


Authors


More by this author
Institution:
University of Oxford
Division:
MSD
Department:
NDM
Sub department:
Jenner Institute
Role:
Author

Contributors

Institution:
University of Oxford
Division:
MSD
Department:
NDM
Sub department:
Jenner Institute
Role:
Supervisor
Institution:
University of Oxford
Division:
MSD
Department:
NDM
Sub department:
Jenner Institute
Role:
Supervisor
Institution:
University of Oxford
Division:
MSD
Department:
NDM
Sub department:
Jenner Institute
Role:
Supervisor


Type of award:
DPhil
Level of award:
Doctoral
Awarding institution:
University of Oxford

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP