Journal article icon

Journal article

The effect of bearing congruency, thickness and alignment on the stresses in unicompartmental knee replacements.

Abstract:
BACKGROUND: Unicompartmental knee replacement offers an effective treatment for patients with single compartment knee disease and is becoming an increasingly popular alternative to total knee replacement. An important cause of failure in a unicompartmental knee replacement implant is polyethylene wear. Significant contributory factors to the amount of polyethylene wear are contact stress, bearing alignment, congruency and thickness. METHODS: Four different unicompartmental knee replacement implant designs (Fully-Congruent; Partially-Congruent; Non-Congruent-metal-backed; Non-Congruent-all-polyethylene) were inserted into a validated finite element model of a proximal tibia. The effect that bearing congruency, alignment and thickness had on the polyethylene stresses during a simulated step-up activity for each design was investigated. Additionally, contact pressures were compared to those calculated from Hertz elastic theory. FINDINGS: Only the Fully-Congruent bearing experienced peak von Mises and contact stresses below the lower fatigue limit for polyethylene during the step-up activity. The highest polyethylene contact stresses were observed for the Partially-Congruent and Non-Congruent-metal-backed designs, which experienced approximately three times the polyethylene lower fatigue limit. Increasing the bearing thickness from 3.5mm to 8.5mm of the Non-Congruent design decreased the contact stresses in the bearing; however they did not fall below the lower fatigue limit for polyethylene. Good agreement between finite element and Hertz contact pressures was found. INTERPRETATION: Fully congruent unicompartmental knee replacement bearings can be markedly thinner without approaching the material failure limit, have a greater potential to preserve bone stock and are less likely to fail mechanically.
Publication status:
Published

Actions


Access Document


Publisher copy:
10.1016/j.clinbiomech.2008.06.001

Authors


More by this author
Institution:
University of Oxford
Division:
MSD
Department:
NDORMS
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
NDORMS
Role:
Author


Journal:
Clinical biomechanics (Bristol, Avon) More from this journal
Volume:
23
Issue:
9
Pages:
1148-1157
Publication date:
2008-11-01
DOI:
EISSN:
1879-1271
ISSN:
0268-0033


Language:
English
Keywords:
Pubs id:
pubs:62569
UUID:
uuid:95babb38-7058-4bc0-a8ee-9fc578dd7b95
Local pid:
pubs:62569
Source identifiers:
62569
Deposit date:
2012-12-19

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP