Thesis icon

Thesis

High-fidelity, near-field microwave gates in a cryogenic surface trap

Abstract:
We present a novel dynamical decoupling strategy for near field microwave gradient driven, Mølmer-Sørensen style, two-ion quantum logic gates, which suppresses errors from both fluctuations in the qubit frequency and imperfection in the decoupling drive itself. Using a microwave-integrated surface-trap which is operated cryogenically at 25 K and a magnetically insensitive 43-Ca+ qubit at 288 G, we demonstrate a 331 us two-ion quantum logic gates, with 4.9(11)e-3 logic error probability. This is below the 1% error threshold required for quantum error correction and represents a ~10x gate time reduction when compared to previously demonstrated near field gradient driven microwave gates below the 1% error probability threshold. Additionally, two faster gates were demonstrated without the use of dynamical decoupling. Respectively, these two gates had gate operation durations of 216.8 us & 153.8 us and measured gate error probabilities of 8.5(20)e-3 & 9.8(21)e-3. Further, we develop a method for rapid calculation of ion transport operations. We successfully demonstrate ion transport as well as crystal splitting and merging operations within two different ion traps using the waveforms calculated by this ion transport toolbox.

Actions


Access Document


Files:

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Atomic & Laser Physics
Role:
Author

Contributors

Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Role:
Supervisor
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Role:
Examiner
Role:
Examiner


More from this funder
Funder identifier:
http://dx.doi.org/10.13039/501100000266
Programme:
Quantum Computing and Simulation Hub
More from this funder
Programme:
Networked Quantum Information Technologies Hub


DOI:
Type of award:
DPhil
Level of award:
Doctoral
Awarding institution:
University of Oxford

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP