Journal article icon

Journal article

The Drosophila orthologue of progeroid human WRN exonuclease, DmWRNexo, cleaves replication substrates but is inhibited by uracil or abasic sites: Analysis of DmWRNexo activity in vitro

Abstract:
Werner syndrome (WS) is a rare late-onset premature ageing disease showing many of the phenotypes associated with normal ageing, and provides one of the best models for investigating cellular pathways that lead to normal ageing. WS is caused by mutation of WRN, which encodes a multifunctional DNA replication and repair helicase/exonuclease. To investigate the role of WRN protein's unique exonuclease domain, we have recently identified DmWRNexo, the fly orthologue of the exonuclease domain of human WRN. Here, we fully characterise DmWRNexo exonuclease activity in vitro, confirming 3′-5′ polarity, demonstrating a requirement for Mg2+, inhibition by ATP, and an ability to degrade both single-stranded DNA and duplex DNA substrates with 3′ or 5′ overhangs, or bubble structures, but with no activity on blunt ended DNA duplexes. We report a novel active site mutation that ablates enzyme activity. Lesional substrates containing uracil are partially cleaved by DmWRNexo, but the enzyme pauses on such substrates and is inhibited by abasic sites. These strong biochemical similarities to human WRN suggest that Drosophila can provide a valuable experimental system for analysing the importance of WRN exonuclease in cell and organismal ageing. © 2012 The Author(s).
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1007/s11357-012-9411-0

Authors


More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Biochemistry
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Biochemistry
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Biochemistry
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Biochemistry
Role:
Author


Publisher:
Springer Verlag
Journal:
Age More from this journal
Volume:
35
Issue:
3
Pages:
793-806
Publication date:
2012-05-05
DOI:
EISSN:
1574-4647
ISSN:
0161-9152


Keywords:
Pubs id:
pubs:416911
UUID:
uuid:92ea9b11-0e0d-4bab-be5b-14b22133edaa
Local pid:
pubs:416911
Source identifiers:
416911
Deposit date:
2016-01-28

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP