Journal article
Higher Segal spaces I
- Abstract:
- This is the first paper in a series on new higher categorical structures called higher Segal spaces. For every d > 0, we introduce the notion of a d-Segal space which is a simplicial space satisfying locality conditions related to triangulations of cyclic polytopes of dimension d. In the case d=1, we recover Rezk's theory of Segal spaces. The present paper focuses on 2-Segal spaces. The starting point of the theory is the observation that Hall algebras, as previously studied, are only the shadow of a much richer structure governed by a system of higher coherences captured in the datum of a 2-Segal space. This 2-Segal space is given by Waldhausen's S-construction, a simplicial space familiar in algebraic K-theory. Other examples of 2-Segal spaces arise naturally in classical topics such as Hecke algebras, cyclic bar constructions, configuration spaces of flags, solutions of the pentagon equation, and mapping class groups.
Actions
Authors
- Publication date:
- 2012-12-14
Terms of use
- Copyright date:
- 2012
- Notes:
- 221 pages
If you are the owner of this record, you can report an update to it here: Report update to this record