Journal article icon

Journal article

Fading AGN candidates: AGN histories and outflow signatures

Abstract:
We consider the energy budgets and radiative history of eight fading active galactic nuclei (AGNs), identified from an energy shortfall between the requirements to ionize very extended (radius > 10 kpc) ionized clouds and the luminosity of the nucleus as we view it directly. All show evidence of significant fading on timescales of ≈50,000 yr. We explore the use of minimum ionizing luminosity Q ion derived from photoionization balance in the brightest pixels in Hα at each projected radius. Tests using presumably constant Palomar-Green QSOs, and one of our targets with detailed photoionization modeling, suggest that we can derive useful histories of individual AGNs, with the caveat that the minimum ionizing luminosity is always an underestimate and subject to uncertainties about fine structure in the ionized material. These consistency tests suggest that the degree of underestimation from the upper envelope of reconstructed Q ion values is roughly constant for a given object and therefore does not prevent such derivation. The AGNs in our sample show a range of behaviors, with rapid drops and standstills; the common feature is a rapid drop in the last ≈2 × 10 4 yr before the direct view of the nucleus. The e-folding timescales for ionizing luminosity are mostly in the thousands of years, with a few episodes as short as 400 yr. In the limit of largely obscured AGNs, we find additional evidence for fading from the shortfall between even the lower limits from recombination balance and the maximum luminosities derived from far-infrared fluxes. We compare these long-term light curves, and the occurrence of these fading objects among all optically identified AGNs, to simulations of AGN accretion; the strongest variations over these timespans are seen in models with strong and local (parsec-scale) feedback. We present Gemini integral-field optical spectroscopy, which shows a very limited role for outflows in these ionized structures. While rings and loops of emission, morphologically suggestive of outflow, are common, their kinematic structure shows some to be in regular rotation. UGC 7342 exhibits local signatures of outflows < 300 km s -1 , largely associated with very diffuse emission, and possibly entraining gas in one of the clouds seen in Hubble Space Telescope images. Only in the Teacup AGN do we see outflow signatures of the order of 1000 km s -1 . In contrast to the extended emission regions around many radio-loud AGNs, the clouds around these fading AGNs consist largely of tidal debris being externally illuminated but not displaced by AGN outflows.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Publisher copy:
10.3847/1538-4357/835/2/256

Authors


More by this author
Role:
Author
ORCID:
0000-0002-6131-9539
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Astrophysics
Oxford college:
Mansfield College
Role:
Author
More by this author
Role:
Author
ORCID:
0000-0002-2203-7889
More by this author
Role:
Author
ORCID:
0000-0003-2064-0518
More by this author
Role:
Author
ORCID:
0000-0001-9984-0891



Publisher:
Institute of Physics
Journal:
Astrophysical Journal More from this journal
Volume:
835
Issue:
2
Pages:
256
Publication date:
2017-02-01
Acceptance date:
2016-12-18
DOI:
EISSN:
1538-4357
ISSN:
0004-637X


Keywords:
Pubs id:
pubs:667734
UUID:
uuid:8d7260c1-acb6-4b9c-ae8d-c01733083ae0
Local pid:
pubs:667734
Source identifiers:
667734
Deposit date:
2018-01-19

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP