Journal article icon

Journal article

Charge condensation and lattice coupling drives stripe formation in nickelates

Abstract:
Revealing the predominant driving force behind symmetry breaking in correlated materials is sometimes a formidable task due to the intertwined nature of different degrees of freedom. This is the case for La2−xSrxNiO4+δ, in which coupled incommensurate charge and spin stripes form at low temperatures. Here, we use resonant x-ray photon correlation spectroscopy to study the temporal stability and domain memory of the charge and spin stripes in La2−xSrxNiO4+δ. Although spin stripes are more spatially correlated, charge stripes maintain a better temporal stability against temperature change. More intriguingly, charge order shows robust domain memory with thermal cycling up to 250 K, far above the ordering temperature. These results demonstrate the pinning of charge stripes to the lattice and that charge condensation is the predominant factor in the formation of stripe orders in nickelates.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Publisher copy:
10.1103/physrevlett.126.177601

Authors



Publisher:
American Physical Society
Journal:
Physical Review Letters More from this journal
Volume:
126
Issue:
17
Article number:
177601
Publication date:
2021-04-30
Acceptance date:
2021-03-31
DOI:
EISSN:
1079-7114
ISSN:
0031-9007
Pmid:
33988428


Language:
English
Keywords:
Pubs id:
1178328
Local pid:
pubs:1178328
Deposit date:
2021-06-24

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP