Journal article icon

Journal article

EVOLUTION IN THE VOLUMETRIC TYPE Ia SUPERNOVA RATE FROM THE SUPERNOVA LEGACY SURVEY

Abstract:
We present a measurement of the volumetric Type Ia supernova (SN Ia) rate (SNR Ia) as a function of redshift for the first four years of data from the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). This analysis includes 286 spectroscopically confirmed and more than 400 additional photometrically identified SNe Ia within the redshift range 0.1 ≤ z ≤ 1.1. The volumetric SNR Ia evolution is consistent with a rise to z 1.0 that follows a power law of the form (1+z) α, with α = 2.11 ± 0.28. This evolutionary trend in the SNLS rates is slightly shallower than that of the cosmic star formation history (SFH) over the same redshift range. We combine the SNLS rate measurements with those from other surveys that complement the SNLS redshift range, and fit various simple SN Ia delay-time distribution (DTD) models to the combined data. A simple power-law model for the DTD (i.e., t -β) yields values from β = 0.98 ± 0.05 to β = 1.15 ± 0.08 depending on the parameterization of the cosmic SFH. A two-component model, where SNR Ia is dependent on stellar mass (M stellar) and star formation rate (SFR) as SNR Ia(z) = A × M stellar(z) + B × SFR(z), yields the coefficients A = (1.9 ± 0.1) × 10 -14 SNe yr -1 M -1⊙ and B = (3.3 ± 0.2) × 10 -4 SNe yr -1 (M ⊙ yr -1) -1. More general two-component models also fit the data well, but single Gaussian or exponential DTDs provide significantly poorer matches. Finally, we split the SNLS sample into two populations by the light-curve width (stretch), and show that the general behavior in the rates of faster-declining SNe Ia (0.8 ≤ s < 1.0) is similar, within our measurement errors, to that of the slower objects (1.0 ≤ s < 1.3) out to z 0.8. © © 2012. The American Astronomical Society. All rights reserved..
Publication status:
Published

Actions


Access Document


Publisher copy:
10.1088/0004-6256/144/2/59

Authors



Journal:
ASTRONOMICAL JOURNAL More from this journal
Volume:
144
Issue:
2
Pages:
59-59
Publication date:
2012-08-01
DOI:
EISSN:
1538-3881
ISSN:
0004-6256


Language:
English
Keywords:
Pubs id:
pubs:344529
UUID:
uuid:8c83d0a9-7f81-4506-aa01-8885892b32b2
Local pid:
pubs:344529
Source identifiers:
344529
Deposit date:
2012-12-19

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP