Internet publication icon

Internet publication

Predicting 3D rigid body dynamics with deep residual network

Abstract:
This study investigates the application of deep residual networks for predicting the dynamics of interacting three-dimensional rigid bodies. We present a framework combining a 3D physics simulator implemented in C++ with a deep learning model constructed using PyTorch. The simulator generates training data encompassing linear and angular motion, elastic collisions, fluid friction, gravitational effects, and damping. Our deep residual network, consisting of an input layer, multiple residual blocks, and an output layer, is designed to handle the complexities of 3D dynamics. We evaluate the network's performance using a dataset of 10,000 simulated scenarios, each involving 3-5 interacting rigid bodies. The model achieves a mean squared error of 0.015 for position predictions and 0.022 for orientation predictions, representing a 25% improvement over baseline methods. Our results demonstrate the network's ability to capture intricate physical interactions, with particular success in predicting elastic collisions and rotational dynamics. This work significantly contributes to physics-informed machine learning by showcasing the immense potential of deep residual networks in modeling complex 3D physical systems. We discuss our approach's limitations and propose future directions for improving generalization to more diverse object shapes and materials.
Publication status:
Published
Peer review status:
Not peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.20944/preprints202407.1111.v1

Authors


More by this author
Institution:
University of Oxford
Division:
ContEd
Department:
Continuing Education
Sub department:
Rothermere American Institute
Role:
Author
ORCID:
0009-0006-4248-6098


Host title:
Preprints
Publication date:
2024-07-15
DOI:
Paper number:
2024071111


Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP