Journal article
A unified picture of aggregate formation in a model polymer semiconductor during solution processing
- Abstract:
- One grand challenge for printed organic electronics is the development of a knowledge platform that describes how polymer semiconductors assemble from solution, which requires a unified picture of the complex interplay of polymer solubility, mass transport, nucleation and, e.g., vitrification. One crucial aspect, thereby, is aggregate formation, i.e., the development of electronic coupling between adjacent chain segments. Here, it is shown that the critical aggregation temperatures in solution (no solvent evaporation allowed) and during film formation (solvent evaporation occurring) are excellent pointers to i) establish reliable criteria for polymer assembly into desired aggregates, and ii) advance mechanistic understanding of the overall polymer assembly. Indeed, important insights are provided on why aggregation occurs via a 1- or 2-step process depending on polymer solubility, deposition temperature and solvent evaporation rate; and the selection of deposition temperatures for specific scenarios (e.g., good vs bad solvent) is demystified. Collectively, it is demonstrated that relatively straightforward, concurrent in situ time-resolved absorbance and photoluminescence spectroscopies to monitor aggregate formation lead to highly useful and broadly applicable criteria for processing functional plastics. In turn, improved control over their properties and device performance can be obtained toward manufacturing sensors, energy-harvesting devices and, e.g., bioelectronics systems at high yield.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 1.9MB, Terms of use)
-
- Publisher copy:
- 10.1002/adfm.202314729
Authors
- Publisher:
- Wiley
- Journal:
- Advanced Functional Materials More from this journal
- Volume:
- 34
- Issue:
- 50
- Article number:
- 2314729
- Publication date:
- 2024-02-13
- Acceptance date:
- 2024-01-20
- DOI:
- EISSN:
-
1616-3028
- ISSN:
-
1616-301X
- Language:
-
English
- Keywords:
- Pubs id:
-
1603712
- Local pid:
-
pubs:1603712
- Deposit date:
-
2024-01-22
Terms of use
- Copyright holder:
- Panzer et al.
- Copyright date:
- 2024
- Rights statement:
- © 2024 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record