Journal article
Binary-tree encoding for uniform binary sources in index modulation systems
- Abstract:
- The problem of designing bit-to-pattern mappings and power allocation schemes for orthogonal frequency-division multiplexing (OFDM) systems that employ subcarrier index modulation (IM) is considered. We assume the binary source conveys a stream of independent, uniformly distributed bits to the pattern mapper, which introduces a constraint on the pattern transmission probability distribution that can be quantified using a binary tree formalism. Under this constraint, we undertake the task of maximizing the achievable rate subject to the availability of channel knowledge at the transmitter. The optimization variables are the pattern probability distribution (i.e., the bit-to-pattern mapping) and the transmit powers allocated to active subcarriers. To solve the problem, we first consider the relaxed problem where pattern probabilities are allowed to take any values in the interval [0,1] subject to a sum probability constraint. We develop (approximately) optimal solutions to the relaxed problem by using new bounds and asymptotic results, and then use a novel heuristic algorithm to project the relaxed solution onto a point in the feasible set of the constrained problem. Numerical analysis shows that this approach is capable of achieving the maximum mutual information for the relaxed problem in low and high-SNR regimes and offers noticeable benefits in terms of achievable rate relative to a conventional OFDM-IM benchmark.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 1.4MB, Terms of use)
-
- Publisher copy:
- 10.1109/JSTSP.2019.2914531
Authors
- Publisher:
- Institute of Electrical and Electronics Engineers
- Journal:
- IEEE Journal of Selected Topics in Signal Processing More from this journal
- Volume:
- 13
- Issue:
- 6
- Pages:
- 1270-1285
- Publication date:
- 2019-05-02
- Acceptance date:
- 2019-04-18
- DOI:
- EISSN:
-
1941-0484
- ISSN:
-
1932-4553
- Keywords:
- Pubs id:
-
pubs:995021
- UUID:
-
uuid:86b80790-51be-467c-8e55-3eba83e0d8a0
- Local pid:
-
pubs:995021
- Source identifiers:
-
995021
- Deposit date:
-
2019-04-30
Terms of use
- Copyright holder:
- IEEE
- Copyright date:
- 2019
- Notes:
- Copyright © The Author(s) 2019. This is an open access article published under CC BY 3.0.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record