Journal article icon

Journal article

Machine Learning for Stochastic Parameterization: Generative Adversarial Networks in the Lorenz’96 Model

Abstract:
Stochastic parameterizations account for uncertainty in the representation of unresolved subgrid processes by sampling from the distribution of possible subgrid forcings. Some existing stochastic parameterizations utilize data‐driven approaches to characterize uncertainty, but these approaches require significant structural assumptions that can limit their scalability. Machine learning models, including neural networks, are able to represent a wide range of distributions and build optimized mappings between a large number of inputs and subgrid forcings. Recent research on machine learning parameterizations has focused only on deterministic parameterizations. In this study, we develop a stochastic parameterization using the generative adversarial network (GAN) machine learning framework. The GAN stochastic parameterization is trained and evaluated on output from the Lorenz '96 model, which is a common baseline model for evaluating both parameterization and data assimilation techniques. We evaluate different ways of characterizing the input noise for the model and perform model runs with the GAN parameterization at weather and climate time scales. Some of the GAN configurations perform better than a baseline bespoke parameterization at both time scales, and the networks closely reproduce the spatiotemporal correlations and regimes of the Lorenz '96 system. We also find that, in general, those models which produce skillful forecasts are also associated with the best climate simulations.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1029/2019ms001896

Authors


More by this author
Role:
Author
ORCID:
0000-0002-0469-2740
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Sub department:
Atmos Ocean & Planet Physics
Role:
Author
ORCID:
0000-0001-8244-0218
More by this author
Role:
Author
ORCID:
0000-0001-7805-0102


Publisher:
American Geophysical Union
Journal:
Journal of Advances in Modeling Earth Systems More from this journal
Volume:
12
Issue:
3
Article number:
e2019MS001896
Publication date:
2020-03-04
Acceptance date:
2020-02-14
DOI:
EISSN:
1942-2466


Language:
English
Keywords:
Pubs id:
1089302
Local pid:
pubs:1089302
Deposit date:
2020-03-12

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP