Journal article icon

Journal article

Weighing dark matter haloes with gravitationally lensed supernovae

Abstract:
High-redshift Type Ia supernovae (SNe Ia) are likely to be gravitationally lensed by dark matter haloes of galaxies in the foreground. Since SNe Ia have very small dispersion after light-curve shape and colour corrections, their brightness can be used to measure properties of the dark matter haloes via gravitational magnification. We use observations of galaxies and SNe Ia within the Great Observatories Origins Deep Survey (GOODS) to measure the relation between galaxy luminosity and dark matter halo mass. The relation we investigate is a scaling law between velocity dispersion and galaxy luminosity in the B band: σ = σ*(L/L*)η, where L* = 1010 h-2 L⊙. The best-fitting values to this relation are σ* = 136 km s-1 and η = 0.27. We find σ*≲ 190 km s-1 at the 95 per cent confidence level. This method provides an independent cross-check of measurements of dark matter halo properties from galaxy-galaxy lensing studies. Our results agree with the galaxy-galaxy lensing results, but have much larger uncertainties. The GOODS sample of SNe Ia is relatively small (we include 24 SNe) and the results therefore depend on individual SNe Ia. We have investigated a number of potential systematic effects. Light-curve fitting, which affects the inferred brightness of the SNe Ia, appears to be the most important one. Results obtained using different light-curve fitting procedures differ at the 68.3 per cent confidence level. © 2009 The Authors. ournal compilation © 2009 RAS.
Publication status:
Published

Actions


Access Document


Publisher copy:
10.1111/j.1365-2966.2009.15907.x

Authors



Journal:
Monthly Notices of the Royal Astronomical Society More from this journal
Volume:
402
Issue:
1
Pages:
526-536
Publication date:
2010-02-11
DOI:
EISSN:
1365-2966
ISSN:
0035-8711


Language:
English
Keywords:
Pubs id:
pubs:324919
UUID:
uuid:819ed58a-6946-4e48-b4b7-040084574d11
Local pid:
pubs:324919
Source identifiers:
324919
Deposit date:
2012-12-19

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP