Journal article
Effect of ion irradiation on nanoindentation fracture and deformation in silicon carbide
- Abstract:
- Silicon carbide is desirable for many nuclear applications, making it necessary to understand how it deforms after irradiation. Ion implantation combined with nanoindentation is commonly used to measure radiation-induced changes to mechanical properties; hardness and modulus can be calculated from load–displacement curves, and fracture toughness can be estimated from surface crack lengths. Further insight into indentation deformation and fracture is required to understand the observed changes to mechanical properties caused by irradiation. This paper investigates indentation deformation using high-resolution electron backscatter diffraction (HR-EBSD) and Raman spectroscopy. Significant differences exist after irradiation: fracture is suppressed by swelling-induced compressive residual stresses, and the plastically deformed region extends further from the indentation. During focused ion beam cross-sectioning, indentation cracks grow, and residual stresses are modified. The results clarify the mechanisms responsible for the modification of apparent hardness and apparent indentation toughness values caused by the compressive residual stresses in ion-implanted specimens.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, 2.1MB, Terms of use)
-
- Publisher copy:
- 10.1007/s11837-021-04636-8
Authors
- Publisher:
- Springer
- Journal:
- JOM Journal of the Minerals, Metals and Materials Society More from this journal
- Volume:
- 73
- Pages:
- 1617-1628
- Publication date:
- 2021-05-07
- Acceptance date:
- 2021-03-17
- DOI:
- EISSN:
-
1543-1851
- ISSN:
-
1047-4838
- Language:
-
English
- Keywords:
- Pubs id:
-
1179349
- Local pid:
-
pubs:1179349
- Deposit date:
-
2021-06-15
Terms of use
- Copyright holder:
- Leide et al.
- Copyright date:
- 2021
- Rights statement:
- Copyright © 2021 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record