Journal article
Investigation of fluidic thrust vectoring for scramjets
- Abstract:
- Fluidic thrust vectoring (FTV) offers a novel approach to aerodynamic control, circumventing some of the issues associated with mechanical systems. One method is shock vector control which involves injecting a fluid into the exhaust nozzle of an engine to redirect the gases and thus, produce a control force. An experimental model which incorporated FTV was designed and tested at Mach 6 in the Oxford high density tunnel (HDT). The model was a simplified two-dimensional scramjet geometry with two different configurations to compare an internal and external exhaust nozzle. The FTV injection system consisted of a slot at the rear edge of the exhaust nozzle fed from an internal plenum. In the experimental campaign, a range of gas injection pressures and free stream stagnation pressures were tested to assess the effectiveness of both configurations. Two new measurement methods were successfully implemented in the HDT: pressure sensitive paint and a 6-axis load cell. The FTV system has been shown to be effective with observable increases in lift and pitching moment. A linear relation between the injection pressure ratio and the control forces could be observed for both configurations.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 2.0MB, Terms of use)
-
- Publisher copy:
- 10.1007/s00348-023-03607-w
Authors
- Publisher:
- Springer
- Journal:
- Experiments in Fluids More from this journal
- Volume:
- 64
- Issue:
- 4
- Article number:
- 75
- Publication date:
- 2023-03-25
- Acceptance date:
- 2023-02-12
- DOI:
- EISSN:
-
1432-1114
- ISSN:
-
0723-4864
- Language:
-
English
- Keywords:
- Pubs id:
-
1335517
- Local pid:
-
pubs:1335517
- Deposit date:
-
2023-04-04
Terms of use
- Copyright holder:
- Hambridge et al
- Copyright date:
- 2023
- Rights statement:
- © The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record