Journal article
Biological effects of sodium phenylbutyrate and taurursodiol in Alzheimer's disease
- Abstract:
- INTRODUCTION: Sodium phenylbutyrate and taurursodiol (PB and TURSO) is hypothesized to mitigate endoplasmic reticulum stress and mitochondrial dysfunction, two of many mechanisms implicated in Alzheimer's disease (AD) pathophysiology. METHODS: The first‐in‐indication phase 2a PEGASUS trial was designed to gain insight into PB and TURSO effects on mechanistic targets of engagement and disease biology in AD. The primary clinical efficacy outcome was a global statistical test combining three endpoints relevant to disease trajectory (cognition [Mild/Moderate Alzheimer's Disease Composite Score], function [Functional Activities Questionnaire], and total hippocampal volume on magnetic resonance imaging). Secondary clinical outcomes included various cognitive, functional, and neuropsychiatric assessments. Cerebrospinal fluid (CSF) biomarkers spanning multiple pathophysiological pathways in AD were evaluated in participants with both baseline and Week 24 samples (exploratory outcome). RESULTS: PEGASUS enrolled 95 participants (intent‐to‐treat [ITT] cohort); cognitive assessments indicated significantly greater baseline cognitive impairment in the PB and TURSO (n = 51) versus placebo (n = 44) group. Clinical efficacy outcomes did not significantly differ between treatment groups in the ITT cohort. CSF interleukin‐15 increased from baseline to Week 24 within the placebo group (n = 34). In the PB and TURSO group (n = 33), reductions were observed in core AD biomarkers phosphorylated tau‐181 (p‐tau181) and total tau; synaptic and neuronal degeneration biomarkers neurogranin and fatty acid binding protein‐3 (FABP3); and gliosis biomarker chitinase 3‐like protein 1 (YKL‐40), while the oxidative stress marker 8‐hydroxy‐2‐deoxyguanosine (8‐OHdG) increased. Between‐group differences were observed for the Aβ42/40 ratio, p‐tau181, total tau, neurogranin, FABP3, YKL‐40, interleukin‐15, and 8‐OHdG. Additional neurodegeneration, inflammation, and metabolic biomarkers showed no differences between groups. DISCUSSION: While between‐group differences in clinical outcomes were not observed, most likely due to the small sample size and relatively short treatment duration, exploratory biomarker analyses suggested that PB and TURSO engages multiple pathophysiologic pathways in AD. Highlights: Proteostasis and mitochondrial stress play key roles in Alzheimer's disease (AD). Sodium phenylbutyrate and taurursodiol (PB and TURSO) targets these mechanisms. The PEGASUS trial was designed to assess PB and TURSO effects on biologic AD targets. PB and TURSO reduced exploratory biomarkers of AD and neurodegeneration. Supports further clinical development of PB and TURSO in neurodegenerative diseases.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 1.1MB, Terms of use)
-
- Publisher copy:
- 10.1002/trc2.12487
Authors
- Publisher:
- Wiley Open Access
- Journal:
- Alzheimer's & Dementia: Translational Research & Clinical Interventions More from this journal
- Volume:
- 10
- Issue:
- 3
- Article number:
- e12487
- Publication date:
- 2024-08-09
- Acceptance date:
- 2024-05-13
- DOI:
- EISSN:
-
2352-8737
- ISSN:
-
2352-8737
- Language:
-
English
- Keywords:
- Pubs id:
-
2020875
- Local pid:
-
pubs:2020875
- Source identifiers:
-
2175110
- Deposit date:
-
2024-08-09
This ORA record was generated from metadata provided by an external service. It has not been edited by the ORA Team.
If you are the owner of this record, you can report an update to it here: Report update to this record