Journal article
Impact of radiation feedback on the formation of globular cluster candidates during cloud–cloud collisions
- Abstract:
-
To understand the impact of radiation feedback during the formation of a globular cluster (GC), we simulate a head-on collision of two turbulent giant molecular clouds (GMCs). A series of idealized radiation-hydrodynamic simulations is performed, with and without stellar radiation or Type II supernovae. We find that a gravitationally bound, compact star cluster of mass MGC ∼ 105 M⊙ forms within ≈3 Myr when two GMCs with mass MGMC = 3.6 × 105 M⊙ collide. The GC candidate does not form during a single collapsing event but emerges due to the mergers of local dense gas clumps and gas accretion. The momentum transfer due to the absorption of the ionizing radiation is the dominant feedback process that suppresses the gas collapse, and photoionization becomes efficient once a sufficient number of stars form. The cluster mass is larger by a factor of ∼2 when the radiation feedback is neglected, and the difference is slightly more pronounced (16%) when extreme Lyα feedback is considered in the fiducial run. In the simulations with radiation feedback, supernovae explode after the star-forming clouds are dispersed, and their metal ejecta are not instantaneously recycled to form stars.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 1.0MB, Terms of use)
-
- Publisher copy:
- 10.3847/1538-4357/ac7ff3
Authors
- Publisher:
- IOP Publishing
- Journal:
- Astrophysical Journal More from this journal
- Volume:
- 935
- Issue:
- 1
- Article number:
- 53
- Publication date:
- 2022-08-16
- Acceptance date:
- 2022-07-08
- DOI:
- EISSN:
-
1538-4357
- ISSN:
-
0004-637X
- Language:
-
English
- Keywords:
- Pubs id:
-
1276980
- Local pid:
-
pubs:1276980
- Deposit date:
-
2023-01-10
Terms of use
- Copyright holder:
- Han et al.
- Copyright date:
- 2022
- Rights statement:
- © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record