Journal article
An efficient numerical method for the solution of sliding contact problems
- Abstract:
- In this paper, an efficient numerical method to solve sliding contact problems is proposed. Explicit formulae for the Gauss-Jacobi numerical integration scheme appropriate for the singular integral equations of the second kind with Cauchy kernels are derived. The resulting quadrature formulae for the integrals are valid at nodal points determined from the zeroes of a Jacobi polynomial. Gaussian quadratures obtained in this manner involve fixed nodal points and are exact for polynomials of degree 2n - 1, where n is the number of nodes. From this Gauss-Jacobi quadrature, the existing Gauss-Chebyshev quadrature formulas can be easily derived. Another apparent advantage of this method is its ability to capture correctly the singular or regular behaviour of the tractions at the edge of the region of contact. Also, this analysis shows that once if the total normal load and the friction coefficient are given, the external moment M and contact eccentricity e (for incomplete contact) in fully sliding contact are uniquely determined. Finally, numerical solutions are computed for two typical contact cases, including sliding Hertzian contact and a sliding contact between a flat punch with rounded comers pressed against the flat surface of a semi-infinite elastic solid. These results provide a demonstration of the validity of the proposed method. Copyright © 2005 John Wiley and Sons, Ltd.
- Publication status:
- Published
Actions
Authors
- Journal:
- INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING More from this journal
- Volume:
- 64
- Issue:
- 9
- Pages:
- 1236-1255
- Publication date:
- 2005-11-07
- DOI:
- EISSN:
-
1097-0207
- ISSN:
-
0029-5981
- Language:
-
English
- Keywords:
- Pubs id:
-
pubs:63350
- UUID:
-
uuid:79eb6d20-af16-43fc-b3cb-fc80c959d3dc
- Local pid:
-
pubs:63350
- Source identifiers:
-
63350
- Deposit date:
-
2012-12-19
Terms of use
- Copyright date:
- 2005
If you are the owner of this record, you can report an update to it here: Report update to this record