Journal article icon

Journal article

A multi-criteria, long-term energy planning optimisation model with integrated on-grid and off-grid electrification - The case of Uganda

Abstract:
While electricity access is lowest in developing countries, the academic literature on generation expansion planning (GEP) has been informed almost exclusively by challenges in industrialised countries. This paper presents the first multi-objective, long-term energy planning optimisation model tailored towards national power systems with little existing power infrastructure. It determines the location, type, capacity and timing of power system infrastructure additions. Specifically, three novel generalisations of standard generation planning are introduced: (1) an expansion of the demand constraints to allow for industrial and household electrification rates below 100%, (2) a minimisation of sub-national energy access inequality in conjunction with minimising system costs considering environmental constraints, and (3) an integration of distribution infrastructure, explicitly including both on-grid and off-grid electrification. Using a specifically designed solution algorithm based on the ε-constraint method, the model was successfully applied to the previously unexplored Ugandan national power system case. The results suggest that while it is cost-optimal to maintain highly unequal sub-national access patterns to meet Uganda's official 80% electrification target in 2040, equal access rates across all districts can be achieved by increasing discounted system cost by only 3%. High optimal shares of locationally flexible on-grid and off-grid solar energy enable cheap sub-national shifts of generation capapcity. This paper strongly challenges the Ugandan government's nuclear energy and largely grid-based electrification expansion plans. Instead, it calls for solar concentrated power as a baseload option in the future and a focus on off-grid electrification which the model selects for the majority of household connections in 2040, even in a high-demand scenario.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Publisher copy:
10.1016/j.apenergy.2019.03.178

Authors


More by this author
Institution:
University of Oxford
Department:
SOGE
Sub department:
Smith School
Department:
Unknown
Role:
Author


Publisher:
Elsevier
Journal:
Applied Energy More from this journal
Volume:
243
Issue:
1 June 2019
Pages:
288-312
Publication date:
2019-04-05
Acceptance date:
2019-03-19
DOI:
ISSN:
0306-2619


Language:
English
Keywords:
Pubs id:
pubs:996169
UUID:
uuid:777369a0-d7a6-4d1d-9c47-2e91184ffe27
Local pid:
pubs:996169
Source identifiers:
996169
Deposit date:
2019-08-01

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP