Journal article
Tardigrades exhibit robust interlimb coordination across walking speeds and terrains
- Abstract:
- Tardigrades must negotiate heterogeneous, fluctuating environments and accordingly utilize locomotive strategies capable of dealing with variable terrain. We analyze the kinematics and interleg coordination of freely walking tardigrades (species: Hypsibius exemplaris). We find that tardigrade walking replicates several key features of walking in insects despite disparities in size, skeleton, and habitat. To test the effect of environmental changes on tardigrade locomotor control circuits we measure kinematics and interleg coordination during walking on two substrates of different stiffnesses. We find that the phase offset between contralateral leg pairs is flexible, while ipsilateral coordination is preserved across environmental conditions. This mirrors similar results in insects and crustaceans. We propose that these functional similarities in walking coordination between tardigrades and arthropods is either due to a generalized locomotor control circuit common to panarthropods or to independent convergence onto an optimal strategy for robust multilegged control in small animals with simple circuitry. Our results highlight the value of tardigrades as a comparative system toward understanding the mechanisms—neural and/or mechanical—underlying coordination in panarthropod locomotion.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Authors
- Publisher:
- National Academy of Sciences
- Journal:
- Proceedings of the National Academy of Sciences More from this journal
- Volume:
- 118
- Issue:
- 35
- Article number:
- e2107289118
- Place of publication:
- United States
- Publication date:
- 2021-08-26
- Acceptance date:
- 2021-07-26
- DOI:
- EISSN:
-
1091-6490
- ISSN:
-
0027-8424
- Pmid:
-
34446560
- Language:
-
English
- Keywords:
- Pubs id:
-
1193830
- Local pid:
-
pubs:1193830
- Deposit date:
-
2021-12-17
Terms of use
- Copyright holder:
- Nirody et al.
- Copyright date:
- 2021
- Rights statement:
- © 2021 The Authors. Published under the PNAS license.
If you are the owner of this record, you can report an update to it here: Report update to this record