Journal article
GA-NIFS: JWST/NIRSpec integral field unit observations of HFLS3 reveal a dense galaxy group at z ∼6.3
- Abstract:
- Massive, starbursting galaxies in the early Universe represent some of the most extreme objects in the study of galaxy evolution. One such source is HFLS3 (z ∼ 6.34), which was originally identified as an extreme starburst galaxy with mild gravitational magnification (μ ∼ 2.2). Here, we present new observations of HFLS3 with the JWST/NIRSpec integral field unit in both low (PRISM/CLEAR; R ∼ 100) and high spectral resolution (G395H/290LP; R ∼ 2700), with high spatial resolution (∼0.1″) and sensitivity. Using a combination of the NIRSpec data and a new lensing model with accurate spectroscopic redshifts, we find that the 3″ × 3″ field is crowded, with a lensed arc (C, z = 6.3425 ± 0.0002), two galaxies to the south (S1 and S2, z = 6.3592 ± 0.0001), two galaxies to the west (W1, z = 6.3550 ± 0.0001; W2, z = 6.3628 ± 0.0001), and two low-redshift interlopers (G1, z = 3.4806 ± 0.0001; G2, z = 2.00 ± 0.01). We present spectral fits and morpho-kinematic maps for each bright emission line (e.g. [OIII]λ5007, Hα, and [NII]λ6584) from the R2700 data for all sources except G2 (whose spectral lines fall outside the observed wavelengths of the R2700 data). From a line ratio analysis, we find that the galaxies in component C are likely powered by star formation, though we cannot rule out or confirm the presence of active galactic nuclei in the other high-redshift sources. We performed gravitational lens modelling, finding evidence for a two-source composition of the lensed central object and a magnification factor (μ = 2.1 − 2.4) comparable to findings of previous work. The projected distances and velocity offsets of each galaxy suggest that they will merge within the next ∼1 Gyr. Finally, we examined the dust extinction-corrected SFRHα of each z > 6 source, finding that the total star formation (510 ± 140 M⊙ yr−1, magnification-corrected) is distributed across the six z ∼ 6.34 − 6.36 objects over a region of diameter ∼11 kpc. Altogether, this suggests that HFLS3 is not a single starburst galaxy, but instead a merging system of star-forming galaxies in the epoch of reionisation.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 3.5MB, Terms of use)
-
- Publisher copy:
- 10.1051/0004-6361/202347838
Authors
- Publisher:
- EDP Sciences
- Journal:
- Astronomy & Astrophysics More from this journal
- Volume:
- 682
- Article number:
- A122
- Publication date:
- 2024-02-12
- Acceptance date:
- 2023-11-29
- DOI:
- EISSN:
-
1432-0746
- ISSN:
-
0004-6361
- Language:
-
English
- Keywords:
- Pubs id:
-
1574307
- Local pid:
-
pubs:1574307
- Deposit date:
-
2023-12-01
Terms of use
- Copyright holder:
- Jones et al.
- Copyright date:
- 2024
- Rights statement:
- © The Authors 2024. Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record