Journal article icon

Journal article

General model for lipid-mediated two-dimensional array formation of membrane proteins: application to bacteriorhodopsin.

Abstract:
Based on experimental evidence for 2D array formation of bacteriorhodopsin, we propose a general model for lipid-mediated 2D array formation of membrane proteins in lipid bilayers. The model includes two different lipid species, "annular" lipids and "neutral" lipids, and one protein species. The central assumption of the model is that the annular lipids interact more strongly with the protein than with the neutral lipids. Monte Carlo simulations performed on this model show that 2D arrays of proteins only form when there are annular lipids present. In addition, no arrays form if all of the lipids present are annular lipids. The geometry of the observed arrays is for the most part hexagonal. However, for a certain range of low annular lipid/protein ratios, arrays form that have geometries other than hexagonal. Using the assumption that the hydrocarbon chains of the annular lipids are restricted in motion when close to a protein, we expand the model to include a ground state and an excited state of the annular lipids. The main result from the extended model is that within a certain temperature range, increasing the temperature will lead to larger and more regular protein arrays.
Publication status:
Published

Actions


Access Document


Publisher copy:
10.1016/s0006-3495(98)74037-8

Authors


More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Biochemistry
Role:
Author


Journal:
Biophysical journal More from this journal
Volume:
75
Issue:
3
Pages:
1180-1188
Publication date:
1998-09-01
DOI:
EISSN:
1542-0086
ISSN:
0006-3495


Language:
English
Keywords:
Pubs id:
pubs:410489
UUID:
uuid:70590756-6c53-4c35-a4af-cac1d613f5d7
Local pid:
pubs:410489
Source identifiers:
410489
Deposit date:
2013-11-17

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP