Journal article icon

Journal article

Spatiotemporal characterization of breathing-induced B0 field fluctuations in the cervical spinal cord at 7T

Abstract:
Magnetic resonance imaging and spectroscopy of the spinal cord stand to benefit greatly from the increased signal-to-noise ratio of ultra-high field. However, ultra-high field also poses considerable technical challenges, especially related to static and dynamic B0 fields. Breathing causes the field to fluctuate with the respiratory cycle, giving rise to artifacts such as ghosting and apparent motion in images. We here investigated the spatial and temporal characteristics of breathing-induced B0 fields in the cervical spinal cord at 7 T. We analyzed the magnitude and spatial profile of breathing-induced fields during breath-holds in an expired and inspired breathing state. We also measured the temporal field evolution during free breathing by acquiring a time series of fast phase images, and a principal component analysis was performed on the measured field evolution. In all subjects, the field shift was largest around the vertebral level of C7 and lowest at the top of the spinal cord. At C7, we measured peak-to-peak field fluctuations of 36 Hz on average during normal free breathing; increasing to on average 113 Hz during deep breathing. The first principal component could explain more than 90% of the field variations along the foot-head axis inside the spinal cord in all subjects. We further implemented a proof-of-principle shim correction, demonstrating the feasibility of using the shim system to compensate for the breathing-induced fields inside the spinal cord. Effective correction strategies will be crucial to unlock the full potential of ultra-high field for spinal cord imaging.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1016/j.neuroimage.2017.11.031

Authors


More by this author
Institution:
University of Oxford
Division:
Medical Sciences Division
Department:
Clinical Neurosciences
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Clinical Neurosciences
Role:
Author
More by this author
Institution:
University of Oxford
Division:
Medical Sciences Division
Department:
Clinical Neurosciences
Role:
Author
More by this author
Institution:
University of Oxford
Division:
Medical Sciences Division
Department:
Clinical Neurosciences
Role:
Author


More from this funder
Grant:
Horizon2020research
innovationprogrammeundertheMarieSklodowska-CuriegrantagreementNo659263
More from this funder
Grant:
CareerDevelopmentFellowship091509/Z/10/Z
StrategicAward102645/Z/13/Z


Publisher:
Elsevier
Journal:
NeuroImage More from this journal
Volume:
167
Pages:
191-202
Publication date:
2017-11-22
Acceptance date:
2017-11-15
DOI:
ISSN:
1053-8119


Language:
English
Keywords:
Pubs id:
pubs:803164
UUID:
uuid:7006ebe2-787e-451a-a2f4-d5d1f930020c
Local pid:
pubs:803164
Deposit date:
2017-12-03

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP