Thesis
Early effects of boron deficiency on membrane function in higher plants
- Abstract:
-
The transfer of plants to boron-free solutions induces rapid responses in membrane functions without necessarily affecting root growth and anatomy. In sunflowers (Helianthus annuus), root growth slows within 3-6 h. However in maize (Zea mays), no growth effects are apparent after more than 30 h without boron (-B). In both species early disturbances in ion uptake and cell wall deposition are seen.
Ultrastructural studies on sunflower root tips after 5.5 h or 3 d -B are reported. Detailed studies on the absorption of Pj and K+ by root tips were complemented by studies on protoplasts isolated from the root tips of +B and -B plants. There were no significant differences in the protoplast yield or viability according to their B status. Ion absorption by protoplasts isolated from roots of +B and -B plants generally resembled that by intact roots of the corresponding B status.
Altering the B status of the protoplasts was expected to initiate earlier responses than in the roots where cell wall binding and diffusion times buffer the system against change; but the greater variability inherent in measuring the protoplast responses prevented the detection of subtle changes.
The activities of two+ membrane bound arjzymes were investigated; β-glucan synthetase and a K+-stimulated, Mg2+ -dependent ATPase. UDPG incorporation by protoplasts continued for over 18 h and was consistently higher in +B protoplasts and root membranes than -B. However SEM revealed no significant differences in fibre deposition around sunflower and maize protoplasts according to their boron status.
(K++Mg2+)-ATPase from sunflower roots was found to be reversibly impaired by the loss of B; and preliminary investigations implied that restoration of activity when B was resupplied to the intact roots was correlated with the B content of the membrane fraction, as determined by the (n,α) method.
Actions
- Publication date:
- 1984
- Type of award:
- DPhil
- Level of award:
- Doctoral
- Awarding institution:
- University of Oxford
- Language:
-
English
- Subjects:
- UUID:
-
uuid:6ce60488-a5b0-4ba0-94ea-d59ee8622596
- Local pid:
-
td:603839409
- Source identifiers:
-
603839409
- Deposit date:
-
2014-04-01
Terms of use
- Copyright holder:
- Julian Andrew Heyes
- Copyright date:
- 1984
- Notes:
- This thesis was digitised thanks to the generosity of Dr Leonard Polonsky.
If you are the owner of this record, you can report an update to it here: Report update to this record