Journal article
Discovery of CD80 and CD86 as recent activation markers on regulatory T cells by protein-RNA single-cell analysis
- Abstract:
-
Background
Traditionally, the transcriptomic and proteomic characterisation of CD4+ T cells at the single-cell level has been performed by two largely exclusive types of technologies: single-cell RNA sequencing (scRNA-seq) and antibody-based cytometry. Here, we present a multi-omics approach allowing the simultaneous targeted quantification of mRNA and protein expression in single cells and investigate its performance to dissect the heterogeneity of human immune cell populations.
Methods
We have quantified the single-cell expression of 397 genes at the mRNA level and up to 68 proteins using oligo-conjugated antibodies (AbSeq) in 43,656 primary CD4+ T cells isolated from the blood and 31,907 CD45+ cells isolated from the blood and matched duodenal biopsies. We explored the sensitivity of this targeted scRNA-seq approach to dissect the heterogeneity of human immune cell populations and identify trajectories of functional T cell differentiation.
Results
We provide a high-resolution map of human primary CD4+ T cells and identify precise trajectories of Th1, Th17 and regulatory T cell (Treg) differentiation in the blood and tissue. The sensitivity provided by this multi-omics approach identified the expression of the B7 molecules CD80 and CD86 on the surface of CD4+ Tregs, and we further demonstrated that B7 expression has the potential to identify recently activated T cells in circulation. Moreover, we identified a rare subset of CCR9+ T cells in the blood with tissue-homing properties and expression of several immune checkpoint molecules, suggestive of a regulatory function.
Conclusions
The transcriptomic and proteomic hybrid technology described in this study provides a cost-effective solution to dissect the heterogeneity of immune cell populations at extremely high resolution. Unexpectedly, CD80 and CD86, normally expressed on antigen-presenting cells, were detected on a subset of activated Tregs, indicating a role for these co-stimulatory molecules in regulating the dynamics of CD4+ T cell responses.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, 8.5MB, Terms of use)
-
(Version of record, 5.9MB, Terms of use)
-
- Publisher copy:
- 10.1186/s13073-020-00756-z
Authors
- Publisher:
- BioMed Central
- Journal:
- Genome Medicine More from this journal
- Volume:
- 12
- Article number:
- 55
- Publication date:
- 2020-06-24
- Acceptance date:
- 2020-06-12
- DOI:
- EISSN:
-
1756-994X
- Language:
-
English
- Keywords:
- Pubs id:
-
1112265
- Local pid:
-
pubs:1112265
- Deposit date:
-
2020-06-15
Terms of use
- Copyright holder:
- Trzupek, D et al.
- Copyright date:
- 2020
- Rights statement:
- © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record