Journal article
Tree based credible set estimation
- Abstract:
- Estimating a joint Highest Posterior Density credible set for a multivariate posterior density is challenging as dimension gets larger. Credible intervals for univariate marginals are usually presented for ease of computation and visualisation. There are often two layers of approximation, as we may need to compute a credible set for a target density which is itself only an approximation to the true posterior density. We obtain joint Highest Posterior Density credible sets for density estimation trees given by Li et al. (in: Lee, Sugiyama, Luxburg, Guyon, Garnett (eds) Advances in neural information processing systems, Curran Associates Inc, Red Hook, 2016) approximating a density truncated to a compact subset of ℝ𝑑 as this is preferred to a copula construction. These trees approximate a joint posterior distribution from posterior samples using a piecewise constant function defined by sequential binary splits. We use a consistent estimator to measure of the symmetric difference between our credible set estimate and the true HPD set of the target density samples. This quality measure can be computed without the need to know the true set. We show how the true-posterior-coverage of an approximate credible set estimated for an approximate target density may be estimated in doubly intractable cases where posterior samples are not available. We illustrate our methods with simulation studies and find that our estimator is competitive with existing methods.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Accepted manuscript, pdf, 804.9KB, Terms of use)
-
- Publisher copy:
- 10.1007/s11222-021-10045-3
Authors
- Publisher:
- Springer
- Journal:
- Statistics and Computing More from this journal
- Volume:
- 31
- Issue:
- 6
- Article number:
- 69
- Publication date:
- 2021-09-08
- Acceptance date:
- 2021-08-10
- DOI:
- EISSN:
-
1573-1375
- ISSN:
-
0960-3174
- Language:
-
English
- Keywords:
- Pubs id:
-
1190256
- Local pid:
-
pubs:1190256
- Deposit date:
-
2021-08-10
Terms of use
- Copyright holder:
- Lee and Nicholls
- Copyright date:
- 2021
- Rights statement:
- © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
- Notes:
- This is the accepted manuscript version of the article. The final version is available online from Springer at https://doi.org/10.1007/s11222-021-10045-3
If you are the owner of this record, you can report an update to it here: Report update to this record