Journal article
Fully solution‐processed photonic structures from inorganic/organic molecular hybrid materials and commodity polymers
- Abstract:
- Managing the interference effects from thin (multi‐)layers allows for the control of the optical transmittance/reflectance of widely used and technologically significant structures such as antireflection coatings (ARCs) and distributed Bragg reflectors (DBRs). These rely on the destructive/constructive interference between incident, reflected, and transmitted radiation. While known for over a century and having been extremely well investigated, the emergence of printable and large‐area electronics brings a new emphasis: the development of materials capable of transferring well‐established ideas to a solution‐based production. Here, demonstrated is the solution‐fabrication of ARCs and DBRs utilizing alternating layers of commodity plastics and recently developed organic/inorganic hybrid materials comprised of poly(vinyl alcohol) (PVAl), cross‐linked with titanium oxide hydrates. Dip‐coated ARCs exhibit an 88% reduction in reflectance across the visible compared to uncoated glass, and fully solution‐coated DBRs provide a reflection of >99% across a 100 nm spectral band in the visible region. Detailed comparisons with transfermatrix methods (TMM) highlight their excellent optical quality including extremely low optical losses. Beneficially, when exposed to elevated temperatures, the hybrid material can display a notable, reproducible, and irreversible change in refractive index and film thickness while maintaining excellent optical performance allowing postdeposition tuning, e.g., for thermo‐responsive applications, including security features and product‐storage environment monitoring.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Accepted manuscript, pdf, 1.8MB, Terms of use)
-
- Publisher copy:
- 10.1002/adfm.201808152
Authors
- Publisher:
- Wiley
- Journal:
- Advanced Functional Materials More from this journal
- Volume:
- 29
- Issue:
- 21
- Pages:
- 1808152
- Publication date:
- 2019-01-28
- Acceptance date:
- 2019-01-07
- DOI:
- EISSN:
-
1616-3028
- ISSN:
-
1616-301X
- Language:
-
English
- Keywords:
- Pubs id:
-
pubs:966692
- UUID:
-
uuid:60b5c185-270c-4095-be69-b4b5c7cd2fb3
- Local pid:
-
pubs:966692
- Source identifiers:
-
966692
- Deposit date:
-
2019-01-29
Terms of use
- Copyright holder:
- WILEY‐VCH Verlag GmbH & Co KGaA, Weinheim
- Copyright date:
- 2019
- Rights statement:
- © 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
- Notes:
- This is the accepted manuscript version of the article. The final version is available online from Wiley at: 10.1002/adfm.201808152
If you are the owner of this record, you can report an update to it here: Report update to this record