Thesis icon

Thesis

Optical Bloch equations for simulating trapped-ion qubits

Abstract:

This thesis describes work on numerical modelling of the 43Ca+ ion in a Paul trap using the optical Bloch equations. This is a challenging system to study, with many states involved in the internal dynamics. A major outcome is the development of a cooling scheme for the 146.09 gauss atomic clock transitions which makes use of a dark resonance. It is much more effective than methods that avoid coherent effects. The scheme is realised in experiment. Complicated fluorescence data is modelled very well, and predictions for the ion's motional temperature show good agreement with measured values. Data and fits for an ion that has been Doppler cooled below the Doppler limit are presented.

I describe GLOBES, a set of routines that simulates an arbitrary ion in the presence of an arbitrary system of laser beams using the optical Bloch equations. Techniques used to efficiently calculate the steady state, analyse fluorescence scans and solve time-dependent problems for small and large times are discussed. A new routine SILVER IMPER that leapfrogs over the initial dynamics to model the approach to the steady state is introduced.

Doppler cooling in 40Ca+ is analysed and two extensions made to the basic theory. The ‘excursion method’ of calculation takes account of the non-linear variation with velocity of the scattering rate. The ‘dynamic method’ allows for the fact that the ion may not be in equilibrium with the incident radiation during its oscillations, a necessity as the timescale of the external motion is of order the characteristic timescale of the internal motion for standard secular frequencies. This 'dynamic effect' is a general property of trapped ion systems and is also observed in a two-state system.

A two-variable fluorescence scan taken from a four-laser, five-level system in 40Ca+ is analysed. Techniques to fit large data sets and automatically resolve resonant features are demonstrated. A general treatment of resonant behaviour in three, four and five level pump/probe systems is used to describe the data. This is verified by a second, tailor-made set of scans.

Actions


Access Document


Authors


More by this author
Division:
MPLS
Department:
Physics
Sub department:
Atomic & Laser Physics
Department:
University of Oxford
Role:
Author

Contributors

Department:
University of Oxford
Role:
Supervisor
Department:
University of Oxford
Role:
Examiner
Department:
University of Sussex
Role:
Examiner


Type of award:
DPhil
Level of award:
Doctoral
Awarding institution:
University of Oxford

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP