Journal article
Lithium chloride selective ion-pair recognition by heteroditopic [2]rotaxanes †
- Abstract:
- The first heteroditopic [2]rotaxane host systems capable of strong and selective binding of lithium chloride ion-pair species are described. Importantly, a cooperative ‘switch on’ mechanism was found to operate, in which complexation of a lithium metal cation enhances the halide anion affinity of the rotaxanes via a combination of favourable proximal electrostatic and preorganised allosteric effects. The mechanically bonded rotaxane host design features a macrocycle component possessing a 2,6-dialkoxy pyridyl cation binding motif and an isophthalamide anion binding group, as well as an axle component functionalised with either a halogen bonding (XB) iodotriazole or hydrogen bonding (HB) prototriazole moiety. Extensive quantitative 1H NMR titration studies in CD3CN/CDCl3 solvent mixtures determined enhanced ion-pair binding affinities for lithium halides over the corresponding sodium or potassium halide salts, with the axle prototriazole-containing HB rotaxane in particular demonstrating a marked selectivity for lithium chloride. Solid-state X-ray crystallographic studies and computational DFT investigations provide evidence for a [2]rotaxane host axle-separated ion-pair binding mode, in which complementary cation and anion binding motifs from both the macrocycle and axle components act convergently to recognise each of the charged guest species.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 1.2MB, Terms of use)
-
- Publisher copy:
- 10.1039/d4dt01807a
Authors
+ Engineering and Physical Sciences Research Council
More from this funder
- Funder identifier:
- https://ror.org/0439y7842
- Publisher:
- Royal Society of Chemistry
- Journal:
- Dalton Transactions More from this journal
- Publication date:
- 2024-08-02
- Acceptance date:
- 2024-07-27
- DOI:
- EISSN:
-
1477-9234
- ISSN:
-
1477-9226
- Language:
-
English
- Source identifiers:
-
2172574
- Deposit date:
-
2024-08-08
If you are the owner of this record, you can report an update to it here: Report update to this record