Conference item icon

Conference item

Effect of thermocouple size on the measurement of exhaust gas temperature in internal combustion engines

Abstract:
Accurate measurement of exhaust gas temperature in internal combustion engines is essential for a wide variety of monitoring and design purposes. Typically these measurements are made with thermocouples, which may vary in size from 0.05 mm (for fast response applications) to a few millimetres. In this work, the exhaust of a single cylinder diesel engine has been instrumented both with a fast-response probe (comprising of a 50.8 μm, 127 μm and a 254 μm thermocouple) and a standard 3 mm sheathed thermocouple in order to assess the performance of these sensors at two speed/load conditions. The experimental results show that the measured time-average exhaust temperature is dependent on the sensor size, with the smaller thermocouples indicating a lower average temperature for both speed/load conditions. Subject to operating conditions, measurement discrepancies of up to ~80 K have been observed between the different thermocouples used. Thermocouple modelling supports the experimental trends and shows that the effect of conduction is inversely proportional to the thermocouple junction size-an effect attributed to changes in the thermal inertia of the device. This conduction error is not typically considered in the literature for exhaust gas temperature measurement. Modelling results also show that radiative heat transfer is small compared to the effect of conduction on the measurements. Finally, a new dynamic response thermocouple compensation method is presented, in order to correct for the dynamic error induced by the thermocouples. This technique recovers the “true” gas temperature with a maximum error of ~1.5-2% in peak temperature depending on speed/load conditions.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.4271/2018-01-1765

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Engineering Science
Oxford college:
Exeter College
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MPLS Division
Department:
Engineering Science
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MPLS Division
Department:
Engineering Science
Role:
Author


Publisher:
SAE International
Host title:
International Powertrains, Fuels and Lubricants Meeting
Journal:
International Powertrains, Fuels and Lubricants More from this journal
Article number:
1765
Series:
SAE Technical Papers
Publication date:
2018-09-10
Acceptance date:
2018-04-06
Event location:
Heidelberg, Germany
DOI:


Pubs id:
pubs:864963
UUID:
uuid:589b4a1b-e8cd-4429-b428-ca7d86b51581
Local pid:
pubs:864963
Source identifiers:
864963
Deposit date:
2018-07-06

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP