Journal article icon

Journal article

Charting the irreversible degradation modes of low bandgap Pb-Sn perovskite compositions for de-risking practical industrial development

Abstract:

The commercialization of a solar technology necessitates the fulfillment of specific requirements both regarding efficiency and stability to enter and gain space in the photovoltaic market. These aims are heavily dependent on the selection of suitable materials, which is critical for suppressing any reliability risks arising from inherent instabilities. Focusing on the absorber material, herein the most suitable low bandgap lead-tin composition candidate for all-perovskite tandem applications is investigated by studying their degradation mechanisms with both widely available and advanced characterization techniques. Three irreversible degradation processes are identified in narrow bandgap Pb-Sn perovskite absorbers: 1) Tin (Sn) oxidation upon air exposure, 2) methylammonium (MA) loss upon heat exposure, and 3) formamidinium (FA) and cesium (Cs) segregation leading to impurity phase formation. From an industrial perspective, it is proposed to refocus attention on FASn0.5Pb0.5I3 which minimizes all three effects while maintaining a suitable bandgap for a bottom cell and good performance. Moreover, a practical and highly sensitive characterization method is proposed to monitor the oxidation, which can be deployed both in laboratory and industrial environments and provide useful information for the technological development process, including, the effectiveness of encapsulation methods, and the acceptable time windows for air exposure.

Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1002/aenm.202302916

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Physics
Role:
Author


Publisher:
Wiley
Journal:
Advanced Energy Materials More from this journal
Volume:
14
Issue:
10
Article number:
2302916
Publication date:
2024-02-06
Acceptance date:
2023-12-15
DOI:
EISSN:
1614-6840
ISSN:
1614-6832


Language:
English
Keywords:
Pubs id:
1620197
Local pid:
pubs:1620197
Deposit date:
2024-04-18

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP