Journal article icon

Journal article

The ion channel CALHM6 controls bacterial infection-induced cellular cross-talk at the immunological synapse

Abstract:

Membrane ion channels of the calcium homeostasis modulator (CALHM) family promote cell–cell crosstalk at neuronal synapses via ATP release, where ATP acts as a neurotransmitter. CALHM6, the only CALHM highly expressed in immune cells, has been linked to the induction of natural killer (NK) cell anti-tumour activity. However, its mechanism of action and broader functions in the immune system remain unclear. Here, we generated Calhm6−/− mice and report that CALHM6 is important for the regulation of the early innate control of Listeria monocytogenes infection in vivo. We find that CALHM6 is upregulated in macrophages by pathogen-derived signals and that it relocates from the intracellular compartment to the macrophage-NK cell synapse, facilitating ATP release and controlling the kinetics of NK cell activation. Anti-inflammatory cytokines terminate CALHM6 expression. CALHM6 forms an ion channel when expressed in the plasma membrane of Xenopus oocytes, where channel opening is controlled by a conserved acidic residue, E119. In mammalian cells, CALHM6 is localised to intracellular compartments. Our results contribute to the understanding of neurotransmitter-like signal exchange between immune cells that fine-tunes the timing of innate immune responses.

Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.15252/embj.2022111450

Authors


More by this author
Role:
Author
ORCID:
0000-0002-6404-6214


Publisher:
EMBO Press
Journal:
EMBO More from this journal
Volume:
42
Issue:
7
Article number:
e111450
Publication date:
2023-03-02
Acceptance date:
2023-01-26
DOI:
EISSN:
1460-2075
ISSN:
0261-4189


Language:
English
Keywords:
Pubs id:
1332431
Local pid:
pubs:1332431
Deposit date:
2023-03-11

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP