Conference item
Design of autonomous DNA cellular automata
- Abstract:
- Recent experimental progress in DNA lattice construction, DNA robotics, and DNA computing provides the basis for designing DNA cellular computing devices, i.e. autonomous nano-mechanical DNA computing devices embedded in DNA lattices. Once assembled, DNA cellular computing devices can serve as reusable, compact computing devices that perform (universal) computation, and programmable robotics devices that demonstrate complex motion. As a prototype of such devices, we recently reported the design of an Autonomous DNA Turing Machine, which is capable of universal sequential computation, and universal translational motion, i.e. the motion of the head of a single tape universal mechanical Turing machine. In this paper, we describe the design of an Autonomous DNA Cellular Automaton (ADCA), which can perform parallel universal computation by mimicking a one-dimensional (1D) universal cellular automaton. In the computation process, this device, embedded in a 1D DNA lattice, also demonstrates well coordinated parallel motion. The key technical innovation here is a molecular mechanism that synchronizes pipelined "molecular reaction waves" along a 1D track, and in doing so, realizes parallel computation. We first describe the design of ADCA on an abstract level, and then present detailed DNA sequence level implementation using commercially available protein enzymes. We also discuss how to extend the ID design to 2D.
- Publication status:
- Published
Actions
Authors
- Journal:
- DNA COMPUTING More from this journal
- Volume:
- 3892
- Pages:
- 399-416
- Publication date:
- 2006-01-01
- Event title:
- 11th International Workshop on DNA Computing (DNA 11)
- ISSN:
-
0302-9743
- ISBN:
- 3540341617
- Keywords:
- Pubs id:
-
pubs:6618
- UUID:
-
uuid:516e6c57-62a1-487a-9fd7-5bcbe05e4021
- Local pid:
-
pubs:6618
- Source identifiers:
-
6618
- Deposit date:
-
2012-12-19
Terms of use
- Copyright date:
- 2006
If you are the owner of this record, you can report an update to it here: Report update to this record