Journal article icon

Journal article

Resolving apparent conflicts between theoretical and experimental models of phosphate monoester hydrolysis

Abstract:
Understanding phosphoryl and sulfuryl transfer is central to many biochemical processes. However, despite decades of experimental and computational studies, a consensus concerning the precise mechanistic details of these reactions has yet to be reached. In this work we perform a detailed comparative theoretical study of the hydrolysis of p-nitrophenyl phosphate, methyl phosphate and p-nitrophenyl sulfate, all of which have served as key model systems for understanding phosphoryl and sulfuryl transfer reactions, respectively. We demonstrate the existence of energetically similar but mechanistically distinct possibilities for phosphate monoester hydrolysis. The calculated kinetic isotope effects for p-nitrophenyl phosphate provide a means to discriminate between substrate- and solvent-assisted pathways of phosphate monoester hydrolysis, and show that the solvent-assisted pathway dominates in solution. This preferred mechanism for p-nitrophenyl phosphate hydrolysis is difficult to find computationally due to the limitations of compressing multiple bonding changes onto a 2-dimensional energy surface. This problem is compounded by the need to include implicit solvation to at least microsolvate the system and stabilize the highly charged species. In contrast, methyl phosphate hydrolysis shows a preference for a substrate-assisted mechanism. For p-nitrophenyl sulfate hydrolysis there is only one viable reaction pathway, which is similar to the solvent-assisted pathway for phosphate hydrolysis, and the substrate-assisted pathway is not accessible. Overall, our results provide a unifying mechanistic framework that is consistent with the experimentally measured kinetic isotope effects and reconciles the discrepancies between theoretical and experimental models for these biochemically ubiquitous classes of reaction.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1021/ja5082712

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS Division
Department:
Chemistry
Sub department:
Organic Chemistry
Role:
Author


Publisher:
American Chemical Society
Journal:
Journal of the American Chemical Society More from this journal
Volume:
137
Issue:
3
Pages:
1081-1093
Publication date:
2014-11-07
DOI:
EISSN:
1520-5126
ISSN:
0002-7863


Language:
English
Keywords:
Pubs id:
pubs:974594
UUID:
uuid:4e86f53d-5a15-4cee-9cb2-961ac06b07c6
Local pid:
pubs:974594
Source identifiers:
974594
Deposit date:
2019-02-19

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP