Journal article icon

Journal article

AI generates covertly racist decisions about people based on their dialect

Abstract:
Hundreds of millions of people now interact with language models, with uses ranging from help with writing1, 2 to informing hiring decisions3. However, these language models are known to perpetuate systematic racial prejudices, making their judgements biased in problematic ways about groups such as African Americans4–7. Although previous research has focused on overt racism in language models, social scientists have argued that racism with a more subtle character has developed over time, particularly in the United States after the civil rights movement8, 9. It is unknown whether this covert racism manifests in language models. Here, we demonstrate that language models embody covert racism in the form of dialect prejudice, exhibiting raciolinguistic stereotypes about speakers of African American English (AAE) that are more negative than any human stereotypes about African Americans ever experimentally recorded. By contrast, the language models’ overt stereotypes about African Americans are more positive. Dialect prejudice has the potential for harmful consequences: language models are more likely to suggest that speakers of AAE be assigned less-prestigious jobs, be convicted of crimes and be sentenced to death. Finally, we show that current practices of alleviating racial bias in language models, such as human preference alignment, exacerbate the discrepancy between covert and overt stereotypes, by superficially obscuring the racism that language models maintain on a deeper level. Our findings have far-reaching implications for the fair and safe use of language technology.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Publisher copy:
10.1038/s41586-024-07856-5

Authors


More by this author
Institution:
University of Oxford
Role:
Author
ORCID:
0000-0001-6603-3428
More by this author
Role:
Author
ORCID:
0000-0002-6459-7745


Publisher:
Nature Research
Journal:
Nature More from this journal
Volume:
633
Issue:
8028
Pages:
147-154
Publication date:
2024-08-28
Acceptance date:
2024-07-19
DOI:
EISSN:
1476-4687
ISSN:
0028-0836


Language:
English
Source identifiers:
2237890
Deposit date:
2024-09-04
This ORA record was generated from metadata provided by an external service. It has not been edited by the ORA Team.

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP