Journal article
The scaling limit of random outerplanar maps
- Abstract:
-
A planar map is outerplanar if all its vertices belong to the same face. We show that random uniform outerplanar maps with n vertices suitably rescaled by a factor 1/n−−√ converge in the Gromov–Hausdorff sense to 72–√/9 times Aldous’ Brownian tree. The proof uses the bijection of Bonichon, Gavoille and Hanusse (J. Graph Algorithms Appl. 9 (2005) 185–204).
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 512.8KB, Terms of use)
-
- Publisher copy:
- 10.1214/15-AIHP694
Authors
- Publisher:
- Institute Henri Poincaré
- Journal:
- Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques More from this journal
- Volume:
- 52
- Issue:
- 4
- Pages:
- 1667-1686
- Publication date:
- 2016-11-17
- Acceptance date:
- 2015-06-16
- DOI:
- ISSN:
-
0246-0203
- Keywords:
- Pubs id:
-
pubs:982287
- UUID:
-
uuid:4db4da73-ed1b-4321-a24b-94e4a06f43c3
- Local pid:
-
pubs:982287
- Source identifiers:
-
982287
- Deposit date:
-
2019-09-30
Terms of use
- Copyright holder:
- Association des Publications de l’Institut Henri Poincaré
- Copyright date:
- 2016
- Notes:
- © Association des Publications de l’Institut Henri Poincaré, 2016. This is the final version of the article. It is also available online from Institute Henri Poincaré at: https://doi.org/10.1214/15-AIHP694
If you are the owner of this record, you can report an update to it here: Report update to this record