Journal article icon

Journal article

The scaling limit of random outerplanar maps

Abstract:

A planar map is outerplanar if all its vertices belong to the same face. We show that random uniform outerplanar maps with n vertices suitably rescaled by a factor 1/n−−√ converge in the Gromov–Hausdorff sense to 72–√/9 times Aldous’ Brownian tree. The proof uses the bijection of Bonichon, Gavoille and Hanusse (J. Graph Algorithms Appl. 9 (2005) 185–204).

Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1214/15-AIHP694

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS Division
Department:
Statistics
Oxford college:
Lady Margaret Hall
Role:
Author


Publisher:
Institute Henri Poincaré
Journal:
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques More from this journal
Volume:
52
Issue:
4
Pages:
1667-1686
Publication date:
2016-11-17
Acceptance date:
2015-06-16
DOI:
ISSN:
0246-0203


Keywords:
Pubs id:
pubs:982287
UUID:
uuid:4db4da73-ed1b-4321-a24b-94e4a06f43c3
Local pid:
pubs:982287
Source identifiers:
982287
Deposit date:
2019-09-30

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP