Journal article
Synergistic Rh/La Codoping Enables Trap-Mediated Charge Separation in Layered Perovskite Photocatalysts
- Abstract:
- Two-dimensional layered perovskite oxides have emerged as promising photocatalysts for solar-driven hydrogen evolution. Although doping has been widely employed to enhance photocatalytic performance, its role in modulating the electronic structure and the local chemical environment of these materials remains poorly understood. Here in this study, we investigate the codoping of Rh and La into exfoliated nanosheets of the Dion–Jacobson perovskite KCa2Nb3O10 to enhance photocatalytic hydrogen evolution reaction (HER) activity. A substantial increase in H2 evolution rate, from 12.3 to 69.0 μmol h–1, was achieved at an optimal doping level of 0.2 wt % Rh and 1.3 wt % La. Comprehensive structural and spectroscopic analyses, including synchrotron techniques and high-resolution microscopy, revealed that Rh3+ substitutes Nb5+ to introduce shallow 4d acceptor states that mediate charge separation, while La3+ substitutes Ca2+, compensates for aliovalent charge imbalance, and modulates local lattice distortions and oxygen vacancy formation. This codoping strategy enhances charge carrier lifetime and separation efficiency through a trap-mediated mechanism. The observed volcano-shaped activity trend highlights a narrow compositional window, where electronic and structural factors are optimally balanced. These findings establish a mechanistic foundation for defect engineering in layered perovskites and offer a pathway for the rational design of photocatalysts.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 6.5MB, Terms of use)
-
- Publisher copy:
- 10.1021/jacs.5c12425
Authors
+ Engineering and Physical Sciences Research Council
More from this funder
- Funder identifier:
- https://ror.org/0439y7842
- Publisher:
- American Chemical Society
- Journal:
- Journal of the American Chemical Society More from this journal
- Volume:
- 147
- Issue:
- 42
- Pages:
- 38599-38608
- Publication date:
- 2025-10-13
- Acceptance date:
- 2025-10-02
- DOI:
- EISSN:
-
1520-5126
- ISSN:
-
0002-7863
- Language:
-
English
- Source identifiers:
-
3402980
- Deposit date:
-
2025-10-23
This ORA record was generated from metadata provided by an external service. It has not been edited by the ORA Team.
If you are the owner of this record, you can report an update to it here: Report update to this record