Journal article icon

Journal article

Functional diversity of melanopsins and their global expression in the teleost retina

Abstract:
Melanopsin (OPN4) is an opsin photopigment that, in mammals, confers photosensitivity to retinal ganglion cells and regulates circadian entrainment and pupil constriction. In non-mammalian species, two forms of opn4 exist, and are classified into mammalian-like (m) and nonmammalian-like (x) clades. However, far less is understood of the function ofthis photopigment family. Here we identify in zebrafish five melanopsins (opn4m-1, opn4m-2, opn4m-3, opn4x-1 and opn4x-2), each encoding a full-length opsin G protein. All five genes are expressed in the adult retina in a largely non-overlapping pattern, as revealed by RNA in situ hybridisation and immunocytochemistry, with at least one melanopsin form present in all neuronal cell types, including cone photoreceptors. This raises the possibility that the teleost retina is globally light sensitive. Electrophysiological and spectrophotometric studies demonstrate that all five zebrafish melanopsins encode a functional photopigment with peak spectral sensitivities that range from 470 to 484 nm, with opn4m-1 and opn4m-3 displaying invertebrate-like bistability, where the retinal chromophore interchanges between cis-and trans-isomers in a lightdependent manner and remains within the opsin binding pocket. In contrast, opn4m-2, opn4x-1 and opn4x-2 are monostable and function more like classical vertebrate-like photopigments, where the chromophore is converted from 11-cis to all-trans retinal upon absorption of a photon, hydrolysed and exits from the binding pocket of the opsin. It is thought that all melanopsins exhibit an invertebrate-like bistability biochemistry. Our novel findings, however, reveal the presence of both invertebrate-like and vertebrate-like forms of melanopsin in the teleost retina, and indicate that photopigment bistability is not a universal property of the melanopsin family. The functional diversity of these teleost melanopsins, together with their widespread expression pattern within the retina, suggests that melanopsins confer global photosensitivity to the teleost retina and might allow for direct "fine-tuning" of retinal circuitry and physiology in the dynamic light environments found in aquatic habitats. © Springer Basel AG 2011.

Actions


Access Document


Publisher copy:
10.1007/s00018-011-0785-4

Authors



Journal:
Cellular and Molecular Life Sciences More from this journal
Volume:
68
Issue:
24
Pages:
4115-4132
Publication date:
2011-12-01
DOI:
EISSN:
1420-9071
ISSN:
1420-682X


Language:
English
Keywords:
Pubs id:
pubs:216532
UUID:
uuid:4cc2b480-0a1a-4d39-b146-b2673df1deca
Local pid:
pubs:216532
Source identifiers:
216532
Deposit date:
2012-12-19

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP