Journal article icon

Journal article

Host–parasite coevolution and the stability of genetic kin recognition

Abstract:
Crozier’s paradox suggests that genetic kin recognition will not be evolutionarily stable. The problem is that more common tags (markers) are more likely to be recognized and helped. This causes common tags to increase in frequency, eliminating the genetic variability that is required for genetic kin recognition. Two potential solutions to this problem have been suggested: host–parasite coevolution and multiple social encounters. We show that the host–parasite coevolution hypothesis does not work as commonly assumed. Host–parasite coevolution only stabilizes kin recognition at a parasite resistance locus if parasites adapt rapidly to hosts and cause intermediate or high levels of damage (virulence). Additionally, when kin recognition is stabilized at a parasite resistance locus, this can have an additional cost of making hosts more susceptible to parasites. However, we show that if the genetic architecture is allowed to evolve, meaning natural selection can choose the recognition locus, genetic kin recognition is more likely to be stable. The reason for this is that host–parasite coevolution can maintain tag diversity at another (neutral) locus by genetic hitchhiking, allowing that other locus to be used for genetic kin recognition. These results suggest a way that host–parasite coevolution can resolve Crozier’s paradox, without making hosts more susceptible to parasites. However, the opportunity for multiple social encounters may provide a more robust resolution of Crozier’s paradox.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1073/pnas.2220761120

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Biology
Role:
Author
ORCID:
0000-0002-5941-3905
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Biology
Role:
Author
ORCID:
0000-0002-1843-6457
More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Biology
Role:
Author
ORCID:
0000-0003-2152-3153


Publisher:
National Academy of Sciences
Journal:
Proceedings of the National Academy of Sciences More from this journal
Volume:
120
Issue:
30
Article number:
e2220761120
Publication date:
2023-07-18
Acceptance date:
2023-05-26
DOI:
EISSN:
1091-6490
ISSN:
0027-8424


Language:
English
Keywords:
Subjects:
Pubs id:
1492636
Local pid:
pubs:1492636
Deposit date:
2023-07-15

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP