Journal article
Collection: REACH Water Security
A new multibranch model for metals in river systems: impacts and control of tannery wastes in Bangladesh
- Abstract:
- A new multibranch Integrated Catchment (INCA) model INCA-Metals has been developed to simulate the impact of tannery discharges on river systems. The model accounts for the key chemical reaction kinetic processes operating as well as sedimentation, resuspension, dilution, mixing and redistribution of pollutants in rivers downstream of tannery discharge points and for mine discharges or acid rock drainage sites. The model is dynamic and simulates the daily behaviour of hydrology and eight metals, including cadmium, mercury, copper, zinc, lead, arsenic, manganese and chromium, as well as cyanide and ammonia. The model is semi-distributed and can simulate catchments, tributaries and instream river behaviour. The model can also account for diffuse pollution from rural runoff as well as point sources from effluent and trade discharges. The model has been applied to the new Savar tannery complex on the Dhaleshwari River system in Bangladesh to assess the impacts on pollution levels in the river system and to evaluate a set of treatment scenarios for pollution control, particularly in the dry season. It is shown that the new effluent treatment plant at Savar needs to significantly improve its operation and treatment capability in order to alleviate metal pollution in the downstream Dhaleshwari River System and also protect the Meghna River System that falls in the Bay of Bengal.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 4.4MB, Terms of use)
-
- Publisher copy:
- 10.3390/su13063556
Authors
- Publisher:
- MDPI
- Journal:
- Sustainability More from this journal
- Volume:
- 13
- Issue:
- 6
- Article number:
- 3556
- Publication date:
- 2021-03-23
- Acceptance date:
- 2021-03-17
- DOI:
- EISSN:
-
2071-1050
Terms of use
- Copyright holder:
- Whitehead et al.
- Copyright date:
- 2021
- Rights statement:
- © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record