Journal article icon

Journal article

Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight

Abstract:
Mosquitoes exhibit unusual wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz)and with lower stroke amplitudes than any other insect group1. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects2, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report free-flight mosquito wing kinematics, solve the full Navier–Stokes equations using computational fluid dynamics with overset grids, and validate our results with in vivo flow measurements. We show that, although mosquitoes use familiar separated flow patterns, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described for a flying animal. There are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half-stroke, and they are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well suited to high aspect ratio mosquito wings.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1038/nature21727

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Zoology
Role:
Author



Publisher:
Nature Publishing Group
Journal:
Nature More from this journal
Volume:
544
Issue:
7648
Pages:
92-95
Publication date:
2017-03-29
Acceptance date:
2017-02-27
DOI:
EISSN:
1476-4687
ISSN:
0028-0836


Pubs id:
pubs:681947
UUID:
uuid:48b29550-fb5f-486d-a366-dcb981c19be7
Local pid:
pubs:681947
Source identifiers:
681947
Deposit date:
2017-02-27

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP