Journal article
The worldwide marine radiocarbon reservoir effect: Definitions, mechanisms and prospects
- Abstract:
- When a carbon reservoir has a lower content of radiocarbon relative to the atmosphere, this is referred to as a reservoir effect. This is expressed as an offset between the radiocarbon ages of samples from the two reservoirs at a single point in time. The marine reservoir effect (MRE) has been a major concern in the radiocarbon community, as it introduces an additional source of error that is often difficult to accurately quantify. For this reason, researchers are often reluctant to date marine material where they have another option. The influence of this phenomenon makes the study of the MRE important for a broad range of applications. The advent of Accelerator Mass Spectrometry (AMS) has reduced sample size requirements and increased measurement precision, in turn increasing the number of studies seeking to measure marine samples. These studies rely on overcoming the influence of the MRE on marine radiocarbon dates through the worldwide quantification of the local parameter ΔR, i.e. the local variation from the global average MRE. Furthermore, the strong dependence on ocean dynamics makes the MRE a useful indicator for changes in oceanic circulation, carbon exchange between reservoirs and the fate of atmospheric CO2, as well as their impact on Earth's climate. This article explores data from the Marine Reservoir Database and reviews the place of natural radiocarbon in oceanic records, focusing on key questions (e.g., changes in ocean dynamics) that have been answered by MRE studies and on their application to different subjects.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 2.6MB, Terms of use)
-
- Publisher copy:
- 10.1002/2017rg000588
Authors
- Publisher:
- American Geophysical Union
- Journal:
- Reviews of Geophysics More from this journal
- Volume:
- 56
- Issue:
- 1
- Pages:
- 278-305
- Publication date:
- 2018-03-30
- Acceptance date:
- 2018-02-11
- DOI:
- EISSN:
-
1944-9208
- ISSN:
-
8755-1209
- Language:
-
English
- Keywords:
- Pubs id:
-
pubs:826233
- UUID:
-
uuid:47d18232-6243-4f6f-9362-515fbd022354
- Local pid:
-
pubs:826233
- Deposit date:
-
2018-02-23
Terms of use
- Copyright holder:
- American Geophysical Union
- Copyright date:
- 2018
- Rights statement:
- Copyright © 2018 American Geophysical Union.
If you are the owner of this record, you can report an update to it here: Report update to this record