Journal article icon

Journal article

A role for leucine-rich, glioma inactivated 1 in regulating pain sensitivity

Abstract:

Neuronal hyperexcitability is a key driver of persistent pain states, including neuropathic pain. Leucine-rich, glioma inactivated 1 (LGI1) is a secreted protein known to regulate excitability within the nervous system and is the target of autoantibodies from neuropathic pain patients. Therapies that block or reduce antibody levels are effective at relieving pain in these patients, suggesting that LGI1 has an important role in clinical pain.

Here we have investigated the role of LGI1 in regulating neuronal excitability and pain-related sensitivity by studying the consequences of genetic ablation in specific neuron populations using transgenic mouse models.

LGI1 has been well studied at the level of the brain, but its actions in the spinal cord and peripheral nervous system are poorly understood. We show that LGI1 is highly expressed in dorsal root ganglion (DRG) and spinal cord dorsal horn neurons in both mouse and human. Using transgenic mouse models, we genetically ablated LGI1, either specifically in nociceptors (LGI1fl/Nav1.8+) or in both DRG and spinal neurons (LGI1fl/Hoxb8+). On acute pain assays, we found that loss of LGI1 resulted in mild thermal and mechanical pain-related hypersensitivity when compared with littermate controls. In LGI1fl/Hoxb8+ mice, we found loss of Kv1 currents and hyperexcitability of DRG neurons. LGI1fl/Hoxb8+ mice displayed a significant increase in nocifensive behaviours in the second phase of the formalin test (not observed in LGI1fl/Nav1.8+ mice), and extracellular recordings in LGI1fl/Hoxb8+ mice revealed hyperexcitability in spinal dorsal horn neurons, including enhanced wind-up. Using the spared nerve injury model, we found that LGI1 expression was dysregulated in the spinal cord. LGI1fl/Nav1.8+ mice showed no differences in nerve injury-induced mechanical hypersensitivity, brush-evoked allodynia or spontaneous pain behaviour compared with controls. However, LGI1fl/Hoxb8+ mice showed a significant exacerbation of mechanical hypersensitivity and allodynia.

Our findings point to effects of LGI1 at the level of both the DRG and the spinal cord, including an important impact of spinal LGI1 on pathological pain. Overall, we find a novel role for LGI1 with relevance to clinical pain.

Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1093/brain/awae302

Authors


More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Clinical Neurosciences
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Clinical Neurosciences
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Clinical Neurosciences
Role:
Author
More by this author
Institution:
University of Oxford
Division:
MSD
Department:
Clinical Neurosciences
Role:
Author


Publisher:
Oxford University Press
Journal:
Brain More from this journal
Volume:
148
Issue:
3
Pages:
1001-1014
Publication date:
2024-09-20
Acceptance date:
2024-09-05
DOI:
EISSN:
1460-2156
ISSN:
0006-8950
Pmid:
39301592


Language:
English
Keywords:
Pubs id:
2031403
Local pid:
pubs:2031403
Deposit date:
2024-09-23

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP